Температурные показатели ламп накаливания. Цветовая температура ламп накаливания

В лампе накаливания используется эффект нагревания тела накаливания при протекании через него электрического тока (тепловое действие тока ). Температура тела накаливания повышается после замыкания электрической цепи. Все тела, температура которых превышает температуру абсолютного нуля, излучают электромагнитное тепловое излучение в соответствии с законом Планка . Спектральная плотность мощности излучения (Функция Планка) имеет максимум, длина волны которого на шкале длин волн зависит от температуры. Положение максимума в спектре излучения сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура излучающего тела превышала 570 °C (температура начала красного свечения, видимого человеческим глазом в темноте). Для зрения человека, оптимальный, физиологически самый удобный, спектральный состав видимого света отвечает излучению абсолютно чёрного тела с температурой поверхности фотосферы Солнца 5770 . Однако не известны твердые вещества, способные без разрушения выдержать температуру фотосферы Солнца, поэтому рабочие температуры нитей ламп накаливания лежат в пределах 2000-2800 °C. В телах накаливания современных ламп накаливания применяется тугоплавкий и относительно недорогой вольфрам (температура плавления 3410 °C), рений (температура плавления примерно та же, но выше прочность при пороговых температурах) и очень редко осмий (температура плавления 3045 °C). Поэтому спектр ламп накаливания смещён в красную часть спектра. Только малая доля электромагнитного излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение . Чем меньше температура тела накаливания, тем меньшая доля энергии , подводимой к нагреваемой проволоке, преобразуется в полезное видимое излучение , и тем более «красным» кажется излучение.

Для оценки физиологического качества светильников используется понятие цветовой температуры . При типичных для ламп накаливания температурах 2200-2900 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен для человека и меньше подавляет естественную выработку мелатонина , важного для регуляции суточных циклов организма (нарушение его синтеза негативно сказывается на здоровье).

В атмосферном воздухе при высоких температурах вольфрам быстро окисляется в триоксид вольфрама (образуя характерный белый налёт на внутренней поверхности лампы при потере ею герметичности). По этой причине, вольфрамовое тело накала помещают в герметичную колбу, из которой, в процессе изготовления лампы откачивается воздух и заполняется инертным газом - обычно аргоном . На заре индустрии ламп их изготавливали с вакууммированными колбами; в настоящее время только лампы малой мощности (для ламп общего назначения - до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом , аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп уменьшает скорость испарения вольфрамовой нити. Это не только увеличивает срок службы лампы, но и позволяет повысить температуру тела накаливания. Таким образом, световой КПД повышается, а спектр излучения приближается к белому. Внутренняя поверхность колбы газонаполненной лампы медленнее темнеет при распылении материала тела накала в процессе работы, как у вакуумированной лампы.

Все чистые металлы и их многие сплавы (в частности, вольфрам) имеют положительный температурный коэффициент сопротивления , что означает увеличение электрического удельного сопротивления с ростом температуры. Эта особенность автоматически стабилизирует электрическую потребляемую мощность лампы на ограниченном уровне при подключении к (источнику с низким выходным сопротивлением), что позволяет подключать лампы непосредственно к электрическим распределительным сетям без использования ограничивающих ток балластных реактивных или активных двухполюсников , что экономически выгодно отличает их от газоразрядных люминесцентных ламп . Для нити накаливания осветительной лампы типично сопротивление в холодном состоянии в 10 раз меньше, чем в нагретом до рабочих температур.

Для изготовления обычной лампочки требуется как минимум 7 металлов .

Конструкция

Конструкции ламп весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы, могут применяться держатели тела накала различной конструкции. Крючки-держатели тела накала ламп накаливания (в том числе ламп накаливания общего назначения) изготовляются из молибдена . Лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга , которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. В настоящее время отказываются от применения предохранителей из-за их малой эффективности.

Колба

Колба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.

Газовая среда

Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молярной массой. Смеси азота N 2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже - криптон Kr или ксенон Xe (молярные массы : N 2 - 28,0134 /моль ; Ar: 39,948 г/моль; Kr - 83,798 г/моль; Xe - 131,293 г/моль).

Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении через тело накала протекает очень большой ток (в десять - четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу - при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. Возрастающая характеристика сопротивления нити накала (при увеличении тока сопротивление растёт) позволяет использовать лампу накаливания в качестве примитивного стабилизатора тока . При этом лампа включается в стабилизируемую цепь последовательно, а среднее значение тока выбирается таким, чтобы лампа работала вполнакала.

В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

Цоколь

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях - 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul) . Также, аналогично Европе, встречаются цоколи без резьбы.

Разновидности

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • Вакуумные (самые простые)
  • Аргоновые (азот-аргоновые)
  • Криптоновые
  • Ксенон-галогенные с отражателем ИК-излучения (так как большая часть излучения лампы приходится на ИК-диапазон, то отражение ИК-излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
  • Накаливания с покрытием, преобразующим ИК-излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

Номенклатура

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения , их выпуск стал сокращаться;
  • декоративные лампы , выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром около 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения , конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение - 12, 24 или 36 (42) В. Область применения - ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы , выпускаемые в окрашенных колбах. Назначение - иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10-25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком), их недостаток - быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации - пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН - локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы - чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6-220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счёт особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов , к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы

  • коммутаторные лампы - разновидность сигнальных ламп. Они служили индикаторами на коммутаторных панелях. Представляют собой узкие длинные миниатюрные лампы с гладкими параллельными контактами, что позволяет легко их заменять. Выпускались варианты: КМ 6-50, КМ 12-90, КМ 24-35, КМ 24-90, КМ 48-50, КМ 60-50, где первое число означает рабочее напряжение в вольтах, второе - силу тока в миллиамперах;
  • Фотолампа , перекальная лампа - разновидность лампы накаливания, предназначенная для работы в строго нормированном форсированном по напряжению режиме. По сравнению с обычными имеет повышенную световую отдачу (до 30 лм/Вт), малый срок службы (4-8 часов) и высокую цветовую температуру (3300-3400 К, по сравнению с 2700 К). В СССР выпускались фотолампы мощностью 300 и 500 Вт. Как правило, имеют матированную колбу. В настоящее время (XXI век) практически вышли из употребления, благодаря появлению более долговечных устройств сравнимой и более высокой эффективности. В фотолабораториях обычно осуществлялось питание таких ламп в двух режимах:
  • Проекционные лампы - для диа- и кинопроекторов. Имеют повышенную яркость (и соответственно, повышенную температуру нити и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.
  • Двухнитевые лампы . В автомобиле - может быть у лампы переднего света одна нить для дальнего света, другая для ближнего, или, к примеру, одна нить для габаритного огня, другая для стоп-сигнала. Кроме того, такие лампы могут содержать экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей. В самолёте посадочно-рулёжная фара имеет основную нить, на которой лампа работает без внешнего охлаждения и дополнительную, включаемую вместе с основной, позволяя получить более мощный свет, но только при внешнем охлаждении - обдуве набегающим потоком воздуха. В звёздах Московского Кремля используются специально сконструированные двухнитевые лампы, обе нити включены параллельно.
  • Лампа-фара . Лампа сложной специальной конструкции, применяемая на подвижных объектах, фигурная колба которой выполнена в виде части корпуса фары с отражателем. Конструктивно содержит в себе нить(и) накала, отражатель, рассеиватель, элементы крепления, клеммы и т. д. Лампы-фары широко применяются в современной автомобильной технике и уже достаточно давно в авиации.
  • Малоинерционная лампа накаливания , лампа накаливания с тонкой нитью - использовалась в системах оптической записи звука методом модуляции яркости источника и в некоторых экспериментальных моделях Фототелеграфа . Благодаря малой толщине и массе нити подача на такую лампу напряжения, модулированного сигналом звукового диапазона частот (до примерно 5 кГц), приводила к изменению яркости в соответствии с мгновенным напряжением сигнала . С начала XXI века не находят применения благодаря наличию намного более долговечных твердотельных излучателей света и намного менее инерционных излучателей других типов.
  • Нагревательные лампы - основной источник тепла в блоках термозакрепления лазерных принтеров и копировальных аппаратов . Лампа цилиндрической формы неподвижно устанавливается внутри вращающегося металлического вала, к которому прижимается бумага с нанесённым тонером . За счёт тепла, передающегося от вала, тонер расплавляется и впрессовывается в структуру бумаги.
  • Лампы специального спектра излучения . Применяются в разнообразной технике.

История изобретения

Перегоревшую лампу, колба которой сохранила целостность, а нить разрушилась лишь в одном месте, можно починить путём встряхиваний и поворотов, таких, чтобы концы нити вновь соединились. При прохождении тока концы нити могут сплавиться и лампа продолжит работу. При этом однако может выйти из строя (расплавиться/обломиться) предохранитель, входящий в состав лампы.

Последовательное подключение

При последовательном подключении ламп накаливания сильно снижается их световая эффективность и меняется цветовая температура. Данный способ используется с целью продлить срок службы ламп или получить освещение более низким накалом (например, при создании интерьера под старину). Для освещения хорошо использовать подключение по две лампы последовательно, но и три лампы могут дать достаточный свет. Данные виды освещения крайне неэффективны и скорее могут найти применение в качестве источников тепла, когда свет от ламп нежелателен (например, при обогреве лампами картофеля в погребе). Ниже приводятся параметры ламп накаливания при последовательном подключении.

Данные приводятся относительно стандартных ламп 95Вт со светоотдачей 13,8лм/Вт (1311лм) и температурой тела накала 2700°C (на практике может быть ниже) при которой пик излучения приходится на длину волны 975нм.

Две лампы 1870°C (жёлтый свет), 2,75лм/Вт, одна лампа 33,25Вт 91,4лм, две 66,5Вт 183лм. Пик излучения 1352нм. Срок службы 35-45 тыс. часов.

Три лампы 1480°C (жёлто-оранжевый свет), 0,845лм/Вт, одна лампа 18,07Вт 15,27лм, три 54,2Вт 45,8лм. Пик излучения 1653нм. Срок службы 250-350 тыс. часов (практически не ограничен).

Четыре лампы 1250°C (оранжевый свет), 0,195лм/Вт, одна лампа 11,74Вт 2,29лм, четыре 46,94Вт 9,15лм. Пик излучения 1903нм. Срок службы не ограничен.

Пять ламп 1090°C (красновато-оранжевый свет), ≈0,044лм/Вт, одна лампа 8,5Вт ≈0,374лм, пять 42,49Вт ≈1,87лм. Пик излучения 2126нм. Срок службы не ограничен.

Шесть ламп 960°C (красно-оранжевый свет), светоотдача в пределах ≈0,0075-0,011лм/Вт, одна лампа 6,52Вт, шесть 39,12Вт. Пик излучения 2350нм. Срок службы не ограничен.

Как видно из параметров, освещение возможно двумя или тремя лампами последовательно, если использовать подключение по четыре лампы, то для получения приемлемого света нужно использовать мощные промышленные лампы накаливания. Подключения по четыре, пять и шесть ламп последовательно удобны, когда лампы используются как обогреватели воздуха. Если лампы используются как замена свечного освещения, то подключение по две последовательно по цвету примерно соответствует пламени парафиновой свечи, а подключение по три близко по цвету к пламени масляной лампы (в сочетании с низким световым потоком данное подключение очень хорошо имитирует огонь). Четыре лампы последовательно удобны для создания света углей в камине, так как дают очень похожий свет. Следует заметить, что при слабом накале и малой мощности ламп они нагреваются достаточно сильно, так как из-за снижения температуры тела накала излучаемое инфракрасное излучение смещается в длинноволновую область и значительный его процент задерживается стеклом колбы, которое становится непрозрачным после 2700нм.

Также выпускаются лампы, специально предназначенные для включения последовательно. Например, на старых вагонах метро для освещения салона последовательно включалось по 15 ламп на напряжение 50 В (что в сумме даёт 750 В - напряжение на контактном рельсе); конструкция таких ламп включает специальное самозакорачивающее устройство, благодаря которому при перегорании одной лампы остальные продолжают гореть.

Преимущества и недостатки ламп накаливания

Преимущества

  • низкая цена
  • небольшие размеры
  • невысокая чувствительность к сбоям в питании и скачкам напряжения
  • мгновенное зажигание и перезажигание
  • незаметность мерцания при работе на переменном токе (важно на предприятиях)
  • возможность использования регуляторов яркости
  • приятный и привычный в быту спектр; спектр излучения лампы накаливания определяется исключительно температурой рабочего тела и не зависит ни от каких иных условий, что следует из принципа её работы. Он не зависит от применяемых материалов и их чистоты, стабилен во времени и имеет стопроцентную предсказуемость и повторяемость. Это важно в том числе при больших инсталляциях и в светильниках из сотен ламп: нередко можно увидеть, когда при применении современных люминофорных или светодиодных ламп они имеют разный цветовой оттенок в пределах группы. Это уменьшает эстетическое совершенство инсталляций. При неисправности одной лампы часто приходится заменять всю группу целиком, но даже при установке ламп из одной партии встречается девиация спектра
  • высокий индекс цветопередачи , Ra 100
  • непрерывный спектр излучения
  • резкие тени (как при солнечном освещении) благодаря малому размеру излучающего тела
  • не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату
  • налаженность в массовом производстве
  • возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
  • отсутствие пускорегулирующей аппаратуры
  • возможность работы на любом роде тока
  • нечувствительность к полярности напряжения
  • чисто активное электрическое сопротивление (единичный коэффициент мощности)
  • отсутствие гудения при работе на переменном токе (ввиду отсутствия электронного балласта, драйвера или преобразователя)
  • при работе не создаёт радиопомехи
  • устойчивость к электромагнитному импульсу
  • нечувствительность к ионизирующей радиации

Недостатки

Производство

Ограничения импорта, закупок и производства

В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу во многих странах введён или планируется к вводу запрет на производство, закупку и импорт ламп накаливания с целью вынуждения замены их на энергосберегающие (компактные люминесцентные , светодиодные , индукционные и др.) лампы.

В России

2 июля 2009 года на заседании в Архангельске президиума Государственного совета по вопросам повышения энергоэффективности Президент Российской Федерации Д. А. Медведев предложил запретить в России продажу ламп накаливания .

23 ноября 2009 года Д. А. Медведев подписал принятый ранее Государственной думой и утверждённый Советом федерации закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» . Согласно документу, с 1 января 2011 года на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более, а также запрещается размещение заказов на поставку ламп накаливания любой мощности для государственных и муниципальных нужд; с 1 января 2013 года может быть введён запрет на электролампы мощностью 75 Вт и более, а с 1 января 2014 года - мощностью 25 Вт и более.

Данное решение является спорным. В поддержку его приводятся очевидные доводы сбережения электроэнергии и подталкивания развития современных технологий. Против - соображение, что экономия на замене ламп накаливания полностью сводится на нет повсеместно распространённым устаревшим и энергонеэффективным промышленным оборудованием, линиями электропередачи, допускающими большие потери энергии, а также относительно высокой стоимостью компактных люминесцентных и светодиодных ламп, малодоступных для беднейшей части населения. Кроме того, в России отсутствует налаженная система сбора и утилизации отработавших люминесцентных ламп, что не было учтено при принятии закона, и в результате чего ртутьсодержащие люминесцентные лампы бесконтрольно выбрасываются. Большинство потребителей не знает о наличии в люминесцентной лампе ртути, так как это не указано на упаковке, а вместо «люминесцентная» написано «энергосберегающая». В условиях низких температур многие «энергосберегающие» лампы оказываются неспособными запуститься. Люминесцентные энергосберегающие лампы неприменимы в прожекторах направленного света, так как светящееся тело в них в десятки раз крупнее нити накаливания, что не даёт возможности узкой фокусировки луча. В силу своей дороговизны «энергосберегающие» лампы чаще становятся объектом кражи из общедоступных мест (например, подъездов жилых домов), такие кражи наносят более весомый материальный ущерб, а в случае вандализма (повреждение люминесцентной лампы из хулиганских побуждений) - возникает опасность загрязнения помещения парами ртути.

Как работает лампа накаливания?

Ретро лампочка - красивая штука, без сомнения. Но как это все устроено? Чем лампочка Эдисона отличается от обычной? Да честно говоря, почти ничем. Сейчас все расставим по полочкам.

Сначала определение. Лампа накаливания — источник света, в котором свет испускает спираль, она же нить накаливания, она же тело накала, нагреваемое электрическим током до высокой температуры. Чаще всего используется спираль из тугоплавкого металла, например вольфрама, либо угольная нить. Чтобы исключить окисление тела накала при контакте с воздухом, его помещают в вакуум, откачивая из стеклянной колбы воздух.

Принцип действия

В любой лампе накаливания, что обычной, что ретро лампочке, используется эффект нагревания проводника при протекании через него электрического тока . Температура нити повышается после замыкания электрической цепи. Для получения видимого излучения необходимо, чтобы температура излучающего тела превышала 570 градусов (температура начала красного свечения, видимого человеческим глазом в темноте). Для зрения человека, оптимальный, физиологически самый удобный, спектральный состав видимого света отвечает излучению с температурой поверхности фотосферы Солнца 5770 K . Однако неизвестны твердые вещества, способные без разрушения выдержать температуру фотосферы Солнца, поэтому рабочие температуры нитей ламп накаливания лежат в пределах 2000—2800 C. В телах накаливания современных ламп накаливания применяется тугоплавкий и относительно недорогой вольфрам (температура плавления 3410 °C ), рений и (очень редко) осмий . Поэтому спектр ламп накаливания смещён в красную часть спектра. Только малая доля электромагнитного излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение и воспринимается в виде тепла . Чем меньше температура тела накаливания, тем меньшая доля энергии , подводимой к нагреваемой проволоке, преобразуется в полезное видимое излучение , и тем более «красным» кажется излучение. Соответственно, ретро лампочки отличаются от обычных тем, что нагревают нить накаливания слабее. За счет этого нить накаливания медленнее испаряется и дольше функционирует.

Ретро лампочки, кстати, еще и полезны. При типичных для ламп накаливания температурах 2200—2900 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен для человека и меньше подавляет естественную выработку мелатонина , важного для регуляции суточных циклов организма (нарушение его синтеза негативно сказывается на здоровье).

В атмосферном воздухе при высоких температурах вольфрам быстро окисляется, образуя характерный белый налёт на внутренней поверхности лампы при потере ею герметичности. По этой причине, вольфрамовое тело накала помещают в герметичную колбу, из которой, в процессе изготовления лампы откачивается воздух. Также встречаются, даже более часто, газонаполненные лампы: в них колба заполняется инертным газом — обычно аргоном . Повышенное давление в колбе газонаполненных ламп уменьшает скорость испарения вольфрамовой нити. Это не только увеличивает срок службы лампы, но и позволяет повысить температуру тела накаливания. Таким образом, световой КПД повышается, а спектр излучения приближается к белому. Внутренняя поверхность колбы газонаполненной лампы медленнее темнеет при распылении материала тела накала в процессе работы, как у вакуумированной лампы. Ретро лампочки как правило делаются с вакуумныи колбами, но некоторые производители делают их газонаполенными.

Конструкция

Конструкция лампы накаливания. На схеме: 1 — колба; 2 — полость колбы; 3 — нить (тело накала); 4, 5 — электроды; 6 — крючки-держатели нити; 7 — ножка лампы; 8 — предохранитель; 9 — корпус цоколя; 10 — изолятор цоколя (стекло); 11 — контакт донышка цоколя.

Конструкции ламп накаливания весьма разнообразны, однако потребительские различия это в основном мощность, форма и размер колбы и тип цоколя.

В конструкции ламп общего назначения предусматривается предохранитель — звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы — как правило, в ножке. Назначение предохранителя — предотвратить разрушение колбы при обрыве нити накала в процессе работы.

Нить накаливания

Формы тел накала весьма разнообразны и зависят от функционального назначения ламп. Тело накала первых ламп изготавливалось из угля . В современных лампах применяются почти исключительно спирали из вольфрама . Для уменьшения размеров тела накала ему обычно придаётся форма спирали. В случае ретро лампочек, когда важен художественный эффект, спираль крепится так как требуется для художественного эффекта, например имитируется спираль в исторических лампочках Эдисона. В случае лампочек обычных спираль зачастую имеет форму шестиугольника для обеспечения равномерности свечения.

Цоколь

Форма цоколя с резьбой обычной лампы накаливания была предложена Джозефом Уилсоном Суоном или, по другим источникам, Льюисом Говардом Латимером - в фирме Эдисона. Размеры цоколей стандартизованы. У ламп бытового применения наиболее распространены цоколи Эдисона E14, E27 и E40 (число обозначает наружный диаметр в мм).

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях — 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul).

Интересные факты

"Столетняя лампа"

  • В США в одном из пожарных отделений города Ливермор (штат Калифорния ) есть 60-ваттная лампа ручной работы, известная под именем «Столетняя лампа ». Она постоянно горит уже более 114 лет, с 1901 года . Необычно высокий ресурс лампе обеспечила в основном работа на малой мощности (4 Ваттa), в глубоком недокале, при очень низком КПД. Лампа включена в Книгу рекордов Гиннесса в 1972 году. Фотографии именно этой лампочки часто публикуют как «ретро лампочку»…
  • В СССР после претворения в жизнь ленинского плана ГОЭЛРО за лампой накаливания закрепилось прозвище «лампочка Ильича ». В наши дни так чаще всего называют простую лампу накаливания, свисающую с потолка на электрическом шнуре без плафона.
  • Для изготовления обычной лампочки требуется, как минимум, 7 металлов.

Эта тема довольно обширна, поэтому, хочу сразу отметить, что в данной заметке рассмотрим вопрос пожароопасности ламп, применяемых в исключительно в быту.

Пожарная опасность патронов электрических ламп

В процессе эксплуатации патроны ламп изделия могут стать причиной пожара от короткого замыкания внутри патрона, от токов перегрузки, от большого переходного сопротивления в контактных частях.

От коротких замыканий могут в патронах ламп возможно замыкание между фазой и нулем. В этом случае причиной пожара является , сопровождающая короткие замыкания, а также перегрев контактных деталей из-за термического воздействия токов короткого замыкания.

Перегрузки патронов по току возможны при подключении лампочек с мощностью, которая превышает номинальную для данного патрона. Обычно загорания при перегрузках связаны также с повышенным падением напряжения в контактах.

Рост падения напряжения в контактах усиливается при увеличении переходного сопротивления контактов и тока нагрузки. Чем больше падение напряжения в контактах, тем больше их нагрев и тем больше вероятность воспламенения пластмассы или проводов, присоединяемых к контактам.

В отдельных случаях, возможно также возгорание изоляции питающих проводов и шнуров, в результате износа токопроводящих жил и старения изоляции.

Все описанное здесь также относится и к другим электроустановочным изделиям (розеткам, выключателям). Особенно пожароопасны электроустановочные изделия имеющие некачественную сборку либо определенные конструктивные недостатки, например, отсутствие механизмов мгновенного расцепления контактов у дешевых выключателей и т. д.

Но вернемся к рассмотрению вопроса пожароопасности источников света.

Основной причиной возникновения пожаров от любых электрических ламп является загорание материалов и конструкций от теплового воздействия ламп в условиях ограниченного теплоотвода. Это может произойти из-за установки лампы непосредственно к сгораемым материалам и конструкциям, закрывания ламп сгораемыми материалами, а также из-за конструктивных недостатков светильников или неправильного положения светильника – без съема тепла, предусмотренного требованиями согласно технической документации на светильник.

Пожарная опасность ламп накаливания

В лампах накаливания электрическая энергия переходит в энергию световую и тепловую, причем тепловая составляет большую долю общей энергии, в связи с чем колбы ламп накаливания очень прилично нагреваются и оказывают значительные тепловые воздействия на окружающие лампу предметы и материалы.

Нагрев при горении лампы распределяется по ее поверхности неравномерно. Так, для газонаполненной лампы мощностью 200 Вт температура стенки колбы по ее высоте при вертикальной подвеске при проведении измерений составила: на цоколе – 82 о С, на середине высоты колбы – 165 о С, в нижней части колбы – 85 о С.

Наличие воздушного промежутка между лампой и каким-либо предметом значительно ослабляет его нагрев. Если температура колбы на ее конце равна для лампы накаливания мощностью 100 Вт – 80 о С, то температура на расстоянии 2 см. от конца колбы составила уже 35 оС, на расстоянии 10 см – 22 о С, а на расстоянии 20 см – 20 о С.

Если колба лампы накаливания соприкасается с телами, обладающими малой тепропроводностью (тканью, бумагой, деревом и др.), в зоне касания в результате ухудшения теплоотвода возможен сильный перегрев. Так, например, у меня 100-ватная лампочка накаливания, обернутая хлопчатобумажной тканью, через 1 минуту после включения в горизонтальном положении нагрелась до 79 оС, через две минуты – до 103 оС, а через 5 минут – до 340 о С, после чего начала тлеть (а это вполне может стать причиной пожара).

Измерения температуры проводились с помощью термопары.

Приведу еще несколько цифр, полученных в результате измерений. Может быть кому-нибудь они покажутся полезными.

Так температура на колбе лампы накаливания мощностью 40 Вт (одна из самых распространенных мощностей ламп в домашних светильниках) составляет через 10 минут после включения лампы 113 градусов, через 30 мин. – 147 о С.

Лампа мощностью 75 Вт через 15 минут нагрелась уже до 250 градусов. Правда в дальнейшем, температура на колбе лампы стабилизируется и практически не изменяется (через 30 минут она составляла примерно все те же 250 градусов).

Лампочка накаливания мощностью 25 Вт нагревается до 100 градусов.

Самые серьезные температуры зафиксированы на колбе фото лампы мощностью 275 Вт. Уже через 2 минуты после включения температура достигла значения 485 градусов, а через 12 минут – 550 градусов.

При использовании галогенных ламп (по принципу действия они являются близкими родственниками ламп накаливания) вопрос их пожароопасности стоит также, если не более остро.

Особенно важно учитывать способность выделять тепло в больших размерах галогенными лампами при необходимости использовании их на деревянных поверхностях, что кстати случается довольно часто. В этом случае, целесообразно использовать низковольтные галогенные лампы (12 В) малой мощности. Так, уже при галогенной лампочке мощностью 20 Вт конструкции сделанные из сосны начинают усыхать, а материалы из ДСП выделять формальдегид. Лампочки мощностью большей чем 20 Вт ещё горячее, что чревато самовозгоранием.

Особое внимание при этом нужно обратить при выборе конструкции светильников для галогенных ламп. Современные качественные светильники сами по себе неплохо изолируют от тепла окружающие светильник материалы. Главное что бы светильник мог беспрепятственно это тепло терять и конструкция светильника, в целом, не представляла из себя термос для тепла.

Если же затронуть общепринятое мнение, что галогенные лампы со специальными рефлектрорами (например, так называемые, дихроичные лампы) практически не выделяют тепла, так это явное заблуждение. Дихроичный рефлектор действует, как зеркало для видимого света, но не пропускает большую часть инфракрасного (теплового) излучения. Все тепло возвращается назад на лампу. Поэтому дихроичных лампы меньше нагревают освещаемый объект (холодный пучок света), но при этом, они нагревают намного больше сам светильник, чем обычные галогенные лампы и лампы накаливания.

Пожарная опасность люминесцентных ламп

Насчет современных люминесцентных ламп (например, Т5 и Т2) и всех люминесцентных ламп с электронными ПРА сведений об их больших тепловых воздействиях, пока у меня нет. Рассмотрим возможные причины появления больших температур на люминесцентных лампах со стандартными электромагнитными ПРА. Несмотря на то, что такие ПРА в Европе уже практически полностью под запретом, у нас они еще очень и очень распространены и до их полной замены на электронные ПРА пройдет еще довольно много времени.

С точки зрения физического процесса получения света люминесцентные лампы более значительную часть электроэнергии превращают в видимый световое излучение, нежели лампы накаливания. Однако при определенных условиях, связанных с неисправностями пускорегулирующей аппаратуры люминесцентных ламп («залипание» стартера и др.), возможен их сильный нагрев (в отдельных случаях нагрев ламп возможен до 190 – 200 градусов, а – до 120).

Такие температуры на лампах являются следствием оплавления электродов. Причем, если электроды сместятся ближе к стеклу лампы, нагрев может быть еще более значительным (температура плавления электродов, в зависимости от их материал, составляет 1450 – 3300 о С). Что же касается возможной температуры на дросселе (100 – 120 о С), то она тоже является опасной, так как температура размягчения для заливочной массы по нормам – 105 оС.

Определенную пожарную опасность представляют стартеры: внутри них находятся легкосгораемые материалы (бумажный конденсатор, картонные прокладки и др.).

Требуют, чтобы максимальный перегрев опорных поверхностей светильников не превышал 50 градусов.

В целом, затронутая сегодня тема очень интересна и довольно обширна, поэтому в будущем мы обязательно к ней еще будем возвращаться.

Обеспечить комфорт и уют в доме невозможно без организации хорошего освещения. С такой целью наиболее часто сейчас используются лампы накаливания, которые можно применять в различных условиях сети (36 Вольт, 220 и 380).

Виды и характеристики

Лампа накаливания общего назначения (ЛОН) – это современное устройство, источник искусственного видимого светового излучения с низким КПД, но ярким свечением. Свое название она получила из-за наличия в корпусе специального тела накала, которое изготавливается из тугоплавких металлов или угольной нити. В зависимости от параметров этого тела определяется срок службы светильника, цена и прочие характеристики.

Фото – модель с вольфрамовой нитью

Несмотря на разные мнения, считается, что первым изобрел лампу ученый из Англии Деларю, но его принцип накаливания был далек от современных норм. После исследованиями занимались разные физики, впоследствии, Гебель презентовал первую лампу с угольной нитью (из бамбука), а после Лодыгин запатентовал первую модель из углеродной нити в вакуумной колбе.

В зависимости от конструктивных элементов и типа газа, защищающего нить накаливания, сейчас существую такие виды ламп:

  1. Аргоновые;
  2. Криптовые;
  3. Вакуумные;
  4. Ксенон-галогенные.

Вакуумные модели являются самыми простыми и привычными. Получили свою популярность из-за низкой стоимости, но вместе с этим они имеют наименьший срок службы. Стоит отметить их простоту замены, ремонту не поддаются. Конструкция имеет следующий вид:

Фото – конструкция вакуумных ламп

Здесь 1 – это, соответственно, вакуумная колба; 2 - вакуумная или наполненная специальным газом, емкость; 3 - нить; 4, 5 - контакты; 6 - крепежи для нити накаливания; 7 - стойка лампы; 8 - предохранитель; 9 - цоколь; 10 - стеклянная защита цоколя; 11 - цокольный контакт.

Аргоновые лампы ГОСТ 2239-79 по яркости очень отличаются вакуумных, но практически полностью повторяют их конструкцию. Они имеют больший срок годности, нежели привычные. Это обязано тем, что нить из вольфрама защищена колбой с нейтральным аргоном, который противостоит высоким температурам горения. Как результат, источник света более яркий и долговечный.

Фото – аргоновый ЛОН

Криптовую модель можно распознать по очень высокой световой температуре. Она светится ярким белым светом, поэтому иногда может вызывать боль в глазах. Высокий показатель яркости обеспечен криптоном – высоко-инертным газом, у которого высокая атомная масса. Его применение позволило значительно уменьшить вакуумную колбу, но при этом не терять яркость источника света.

Галогенные светильники накаливания получили большую популярность благодаря своей экономной работе. Современная энергосберегающая лампа поможет не только сократить расходы на оплату электрической энергии, но и уменьшить траты на покупку новых моделей для освещения. Производство такой модели осуществляется на специализированных заводах, как и утилизация. Предлагаем для сравнения изучить потребляемую мощность перечисленных выше аналогов:

  1. Вакуумные (обычные, без газа или с аргоном): 50 или 100 Вт;
  2. Галогеновые: 45-65 Вт;
  3. Ксеноновые, галогено-ксеноновые (комбинированные): 30 Вт.

Благодаря небольшому размеру, наиболее часто электрические ксеноновые и галогеновые осветители используют как автомобильные фары. У них высокое сопротивление и отличная долговечность.

Фото – ксенон

Классификация ламп производится не только исходя из наполняющего газа, а также, в зависимости от типов цоколей и назначения. Существуют такие виды:

  1. G4, GU4, GY4, и прочие. Галогеновые модели накаливания отличают патроны-штекеры;
  2. E5, E14, E17, E26, E40 – наиболее распространенные типы цоколей. В зависимости от номера, могут быть узкими и широкими, классифицируются по возрастанию. Первые люстры изготавливались именно под такие контактирующие части;
  3. G13, G24 производители используют эти обозначения для люминесцентных осветителей.
Фото – формы ламп и типы цоколей

Достоинства и недостатки

Сравнение отдельных видов светильников накаливания позволит выбрать наиболее подходящий вариант, исходя из того, какая нужна мощность и световая отдача. Но у всех перечисленных видов светильников есть общие достоинства и недостатки:

Плюсы:

  1. Доступная цена. Стоимость многих ламп находится в пределах 2 у. е.;
  2. Быстрое включение и выключение. Это наиболее значимый параметр в сравнении с энергосберегающими лампами с долгим включением;
  3. Маленькие размеры;
  4. Простая замена;
  5. Широкий выбор моделей. Сейчас есть декоративные светильники (свеча, ретро-завиток и другие), классические, матовые, зеркальные и прочие.

Минусы:

  1. Высокая потребляемая мощность;
  2. Негативное воздействие на глаза. В большинстве случаев от него поможет матовая или зеркальная поверхность колбы лампы накаливания;
  3. Низкая защита от перепадов напряжения. Для обеспечения нужного уровня используется блок защиты для лампы накаливания, он подбирается в зависимости от типа;
  4. Короткий эксплуатационный период;
  5. Очень низкий коэффициент полезного действия. Большая часть электрической энергии уходит не на освещение, а на нагрев колбы.

Параметры

Технические характеристики любой модели обязательно включают в себя: световой поток лампы накаливания, цвет свечения (или цветовая температура), мощность и срок службы. Сравним перечисленные типы:

Фото – цветовая температура

Из всех перечисленных типов только галогенки можно отнести к энергосберегающим моделям. Поэтому многие хозяева стремятся заменить все источники света в своем жилище на более рациональные, к примеру, на диодные. Соответствие светодиодных ламп накаливания, сравнительная таблица:

Для лучшего объяснения энергозатрат предлагаем изучить соотношение ватт к люменам. Например, лампа дневного света, с вольфрамовой нитью накаливания 100 Вт – люмен 1200, соответственно, 500 Вт – более 8000.

При этом, часто использующаяся в производственных и бытовых условиях, люминесцентная модель, имеет похожие характеристики на ксеноновую. Благодаря таким характеристикам есть возможность обеспечить плавное включение ламп накаливания. Для этого используется специальный прибор – диммер для ламп накаливания.

Такой регулятор можно собрать своими руками, если есть схема, подходящая под Вашу лампу. Сейчас большой популярностью пользуются аналоги обычных вариантов, но с зеркальным напылением – рефлекторная модель Philips, импортные Osram и другие. Купить фирменную лампу накаливания можно в специализированных фирменных магазинах.

Много разговоров и необоснованных споров стоит вокруг этого вопроса. Кто изобрел лампу накаливания? Одни утверждают, что это Лодыгин, другие, что Эдисон. Но все куда сложнее, давайте разберемся с хронологией исторических событий.

Существует множество методов трансформации электрической энергии в световую. К ним относятся лампы дугового принципа действия, газоразрядного и те, где источником свечения является нагревательная нить. Фактически лампочку накаливания тоже можно считать искусственным источником освещения, поскольку для ее работы применяется эффект нагреваемого проводника, через который проходит ток. В качестве накаливаемого элемента чаще всего выступает металлическая спираль или угольная нить. Помимо проводника в конструкцию лампочки входит колба, токоввод, предохранитель и цоколь. Однако всё это мы знаем уже сейчас. А ведь не так давно было время, когда несколько учёных вели одновременные разработки в области искусственных источников света и боролись за звание изобретателя лампочки.

Хронология изобретения

Читая всю статью снизу, очень удобно посматривать на эту таблицу:

1802 г. Электрическая дуга Василия Петрова.
1808 г. Гемфри Дэви описал дуговой электрический разряд между двумя угольными стержнями, создав первую лампу.
1838 г. Бельгийский изобретатель Жобар, создал первую лампу накаливания с угольным сердечником.
1840 г. Уоррен де ла Рю создал первую лампочку с платиновой спиралью.
1841 г. Англичанин Фредерик де Молейн запатентовал лампу с платиновой нитью и углеродным наполнением.
1845 г. Кинг заменил платиновый элемент на угольный.
1845 г. Немец Генрих Гёбель создал прототип современной лампочки.
1860 г. Англичанин Джозеф Суон (Свон) получил патент на лампу с углеродной бумагой.
1874 г. Александр Николаевич Лодыгин запатентовал лампу с угольным стержнем.
1875 г. Василий Дидрихсон усовершенствовал лампу Лодыгина.
1876 г. Павел Николаевич Яблочков создал каолиновую лампу.
1878 г. Английский изобретатель Джозеф Уилсон Суон запатентовал лампу с угольным волокном.
1879 г. Американец Томас Эдисон запатентовал свою лампу с платиновой нитью.
1890 г. Лодыгин создает лампы с нитями накаливания из вольфрама и молибдена.
1904 г. Шандор Юст и Франьо Ханаман запатентовали лампу с вольфрамовой нитью.
1906 г. Лодыгин запустил производство ламп в США.
1910 г. Вильям Дэвид Кулидж усовершенствовал метод производства вольфрамовых нитей.


Если вы хотите действительно разобраться, то настоятельно рекомендуем прочитать статью целиком.

Первые преобразования энергии в свет

В XVIII веке произошло знаменательное открытие, положившее начало огромной череде изобретений. Был обнаружен электрический ток. На рубеже следующего столетия итальянским учёным Луиджи Гальвани был изобретен способ получения электрического тока из химических веществ – вольтов столб или гальванический элемент. Уже в 1802 году физик Василий Петров открыл электрическую дугу и предложил применять ее в качестве осветительного устройства. Через 4 года королевское общество увидело электрическую лампу Гемфри Дэви, она освещала помещение за счёт искорок между стержнями из угля. Первые дуговые лампы отличались чересчур высокой яркостью и ценой, что делало их непригодными для ежедневного использования.

Лампа накаливания: прототипы

Первые разработки осветительных ламп с накаливаемыми элементами начались в середине 19-ого века. Так, в 1838 году бельгийский изобретатель Жобар представил проект лампы накаливания с угольным сердечником. Хотя время работы этого устройства не превышало получаса, оно являло собой свидетельство технологического прогресса в данной области. В 1840 -м году, Уоррен де ла Рю, английский астроном, произвёл лампочку с платиновой спиралью, первую в истории электротехники лампу с накаливаемым элементом в виде спирали. Изобретатель пропустил электрический ток через вакуумную трубку с помещенным в нее мотком платиновой проволоки. В результате нагревания платина излучала яркое свечение, а практически полное отсутствие воздуха позволяло использовать устройство в любых температурных условиях. Из-за дороговизны платины в коммерческих целях применять такую лампу было нелогично, даже с учётом её эффективности. Однако в дальнейшем именно образец этой лампочки стали считать предком других ламп накаливания. Уоррен де ла Рю спустя несколько десятилетий (в 1860 -х) принялся активно изучать феномен газоразрядного свечения под воздействием тока.

В 1841 году англичанин Фредерик де Молейн запатентовал лампы, представлявшие собой колбы с платиновой нитью, наполненные углеродом. Однако, проведенные им в 1844 г. испытания в отношении проводников, не увенчались успехом. Это было связано с быстрым плавлением платиновой нити. В 1845 году уже другой учёный, Кинг, заменил платиновые элементы накаливания на угольные палочки и получил на свое изобретение патент. В эти же годы за океаном, в США, Джон Старр запатентовал лампочку с вакуумной сферой и углеродной горелкой.

В 1854 -м году немецкий часовщик Генрих Гёбель придумал устройство, считающееся прототипом современных лампочек. Он продемонстрировал её на электротехнической выставке в США. Она представляла собой вакуумную лампу накаливания, которая действительно годилась для применения в самых различных условиях. В качестве источника света Генрих предложил использовать бамбуковую нить, которая была обуглена. Взамен колбы учёный брал простые бутылочки от туалетной воды. Вакуум в них создавался за счёт добавления и выливания ртути из колбы. Недостатком изобретения являлась излишняя хрупкость и время работы всего на несколько часов. В годы активной исследовательской жизни Гёбель не смог встретить должного признания в обществе, но в 75 лет он был назван изобретателем первой практичной лампы накаливания на основе угольной нити. Кстати, именно Гёбель впервые воспользовался осветительными проборами в рекламных целях: он ездил по Нью-Йорку на телеге, украшенной лампочками. На издали привлекающей внимание коляске была установлена подзорная труба, через которую ученый позволял за некоторую плату взглянуть на звёздное небо.

Первые результаты

Наиболее эффективные результаты в области получения вакуумной лампочки были достигнуты известным химиком и физиком из Англии – Джозефом Суоном (Своном). В 1860 годе он получил патент на своё изобретение, хотя лампа работала не слишком долго. Это было связано с использованием углеродной бумаги — она быстро превращалась в крошки после горения.

В середине 70-х гг. 19-го века параллельно со Своном несколько изобретений запатентовал и российский учёный. Выдающийся учёный и инженер Александр Лодыгин изобрёл в 1874 году нитевую лампу, в которой для нагревания использовался угольный стержень. К опытам по изучению осветительных приборов он приступил в 1872 году, находясь в Петербурге. В результате, благодаря банкиру Козлову, было основано общество по эксплуатации лампочек с углём. За своё изобретение учёный получил премию в Академии наук. Эти лампы сразу же стали использоваться для уличного освещения и здания Адмиралтейства.

Алекса́ндр Никола́евич Лоды́гин

Лодыгин также был первым, кто придумал применять закрученные в спираль вольфрамовые или молибденовые нити. К 1890 -м гг. у Лодыгина на руках было несколько разновидностей ламп с накаливаемыми нитями из разных металлов. Он предложил откачивать воздух из лампочки, чтобы процесс окисления шёл медленнее, а значит, срок службы лампы был больше. Первая коммерческая лампа со спиралевидной нитью из вольфрама в Америке производилась в дальнейшем как раз по патенту Лодыгина. Он изобрёл даже лампочки с газом, заполненные угольной нитью и азотом.

Идея Лодыгина в 1875 году была усовершенствована другим русским механиком-изобретателем Василием Дидрихсоном. Он изготавливал угольки, обугливая древесные цилиндрики в графитовых тиглях. Именно он первым сумел осуществить откачку воздуха и установил в лампочку более одной нити, чтобы при перегорании происходила замена. Выпущена такая лампа была под руководством Кона, а освещать ею стали большой магазин белья и подводные кессоны во время строительства моста в Петербурге. В 1876 году лампу усовершенствовал Николай Павлович Булыгин. Учёный накаливал только один конец уголька, который постоянно выдвигался в процессе обгорания. Тем не менее, устройство было сложным и дорогим.

В 1875-76 гг. электротехник Павел Яблочков, создавая электрическую свечу, обнаружил, что каолин (разновидность белой глины) под воздействием высокой температуры хорошо проводит электричество. Он изобрёл каолиновую лампочку с нитью накаливания из соответствующего материала. Отличительной особенностью этой лампы является тот факт, что для её работы не требовалось помещать каолиновую нить в вакуумную колбу – она сохраняла работоспособность при контакте с воздухом. Созданию лампочки предшествовала долгая работа учёного над дуговыми лампочками в Париже. Однажды Яблочков посещал местное кафе и, наблюдая за расставлением столовых приборов официантом, пришёл к новой идее. Угольные электроды он решил располагать параллельно друг другу, а не горизонтально. Существовала, правда, опасность, что выгорать будет не только дуга, но и токопроводящие зажимы. Дилемму решили за счёт добавления изолятора, постепенно выгоравшего вслед за электродами. Этим изолятором и стала белая глина. Чтобы лампочка загоралась, между электродами разместили перемычку из угля, а неравномерное сгорание самих электродов было сведено к минимуму за счёт использования генератора переменного тока.

Своё изобретение Яблочков продемонстрировал на технологической выставке в Лондоне в 1876 году. Уже через год один из французов, Денейруз, учредил акционерное общество по исследованию осветительных технологий Яблочкова. Сам учёный слабо верил в будущее лампы накаливания, однако электрические свечи Яблочкова имели огромную популярность. Успех был обеспечен не только низкой ценой, но и продолжительностью горения в 1,5 часа. Благодаря этому изобретению появились фонари с заменой свеч, и улицы стали освещать гораздо лучше. Правда, минусом таких свечей было наличие только переменного потока света. Чуть позже физик из Германии, Вальтер Нернст, разработал лампочку такого же принципа, но нить накаливания сделал из магнезии. Лампа зажигалась только после нагревания нити, для чего использовали сначала спички, а потом электрические нагреватели.

Борьба за патенты

К концу 1870-х гг. свою исследовательскую деятельность начал выдающийся инженер и изобретатель Томас Эдисон, живший в США. В процессе создания лампы он перепробовал разные металлы для нитей накаливания. Изначально учёный полагал, что решение проблемы электрических лампочек можно за счёт автоматического их отключения при высоких температурах. Но эта идея не сработала, так как постоянное выключение холодной лампы приводило лишь к получению непостоянного мерцающего излучения. Существует версия, что в конце 70-х гг. лейтенант русского флота Хотинский привёз несколько лампочек накаливания Лодыгина и показал их Эдисону, что и повлияло на его дальнейшие разработки.

Не останавливаясь на своих достижениях в Англии, Джозеф Суон (Joseph Swan), уже известный на тот момент в научных кругах, в 1878 году запатентовал лампу с угольным волокном. Оно помещалось в разреженную атмосферу с кислородом, поэтому свет выходил очень ярким. Уже через год в Англии появилось электрическое освещение в большинстве домов.

То́мас А́льва Эдисон

Тем временем, Томас Эдисон взял на работу в свою лабораторию Френсиса Аптона. Вместе с ним материалы стали тестировать точнее, и внимание было приковано к недочётам предыдущих патентов. В 1879 г. Эдисоном была запатентована лампочка с платиновой основой, а уже через год учёный создал лампу с угольным волокном и бесперебойным действием на 40 часов. За время работы американец провёл 1,5 тысячи испытаний и смог создать также поворотный выключатель бытового типа. Никаких новых изменений в электрическую лампочку Лодыгина Томас Эдисон в принципе не внёс. Просто из его стеклянной сферы с угольной нитью выкачивалась большая доля воздуха. Важнее то, что американский учёный разработал надсистему для лампочки, изобрел винтовой цоколь, патрон и предохранители, а в последствии организовал массовое производство.

Новые источники света смогли вытеснить газовые, а само изобретение некоторое время называлось лампой «Эдисона-Суона». В 1880 году Томас установил самое верное значение вакуума, которое создавало самое устойчивое безвоздушное пространство. Из лампочки воздух откачивали с помощью ртутного насоса.

К концу 1880 года бамбуковые волокна в лампочках могли гореть около 600 часов. Этот материал из Японии был признан лучшим угольным компонентом органического типа. Поскольку бамбуковые нити стоили довольно дорого, изготавливать их Эдисон предложил из хлопковых волокон, обработанных специальных способов. Первые компании для возведения крупных электрических систем были созданы в Нью-Йорке в 1882 году. В этот период Эдисон даже подавал в суд на Суона по поводу нарушения авторских прав. Но в итоге учёные создали совместную фирму «Edison-Swan United», которая довольно быстро выросла в мирового лидера по производству электрических лампочек.

За свою жизнь Томас Эдисон смог получить 1093 патента. Среди его известных изобретений: фонограф, кинетоскоп, телефонный передатчик. Однажды его спросили, не обидно ли было ошибаться 2 тысячи раз перед созданием лампочки. Учёный ответил: «Я не ошибался, а обнаружил 1 999 способов, как не нужно делать лампочку».

Металлические нити накаливания

На исходе 1890-х гг. стали появляться новые лампочки. Так, нити накаливания Вальтер Нернст предложил делать из особого сплава, в состав которого входили окиси магния, иттрия, тория и циркония. В лампе Ауэра (Карл Ауэр фон Вельсбах, Австрийская республика) излучателем света выступала осмиевая нить, а в лампочке Больтона и Фейерлейна – танталовая. Александр Лодыгин в 1890 году запатентовал лампу накаливания, где применялась быстронакаливаемая нить из вольфрама (было использовано несколько тугоплавким металлов, но именно вольфрам по результатам исследований имел лучшие показатели). Примечательно, что спустя 16 лет он продал все права на своё революционное изобретение промышленному гиганту «General Electric», компании, основанной великим Томасом Эдисоном.

Однако в истории электротехники известно два патента на вольфрамовую лампу – в 1904 году дуэт ученых Шандора Юста и Франьо Ханамана зарегистрировали изобретение, аналогичное лодыгинскому. Спустя год в Австро –Венгрии приступили к массовому выпуску этих ламп. Позднее в «General Electric» стали производить лампочки-колбы с инертными газами. Учёному из этой организации, Ирвингу Ленгмюру, в 1909 году удалось модернизировать изобретение Лодыгина, добавив в неё аргон с целью продлить срок действия и увеличить светоотдачу.

В 1910 году Вильям Кулидж усовершенствовал процессы промышленного изготовления вольфрамовых нитей, после чего начался выпуск ламп не только с элементом накаливания в виде спирали, но и в виде зигзага, двойной и тройной спирали.

Дальнейшие изобретения

  • С момента создания первых осветительных электроприборов постоянно проводились изучения свойств газоразрядных ламп, однако вплоть до начала 20-го столетия ученые проявляли к ним слабый интерес. Примером может послужить тот факт, что первейшие примитивные прототипы ртутных ламп были сконструированы в Великобритании еще в 1860-х годах, однако лишь в 1901 году Петер Хьюит изобрёл ртутную лампу низкого давления. Через пять лет в производство вышли аналоги высокого давления. А в 1911 году Жорж Клауди, инженер-химик из Франции, показал миру неоновую лампочку, которая тут же стала центром внимания всех рекламщиков.
  • В 1920-40-е гг. были изобретены натриевые лампы, люминесцентные и ксеноновые. Часть из них стали массово производить даже для использования в быту. На сегодняшний день в известно порядка 2 тысяч разновидностей источников света.
  • В СССР разговорным названием лампы накаливания стало словосочетание «лампочка Ильича». Именно эта идиома стала родной для крестьян и колхозников во времена всеобщей электрификации. В 1920 г. Владимир Ленин посетил одну из деревень для запуска электростанции, тогда-то и появилось крылатое выражение. Впрочем, изначально данное выражение применялось для обозначения плана по электрификации сельского хозяйства, поселков и деревень. Лампочка Ильича представляла собой патрон, свободно подвешиваемый за провод к потолку и свисающий вниз без плафона. В конструкцию патрона также входил выключатель, а проводка прокладывалась открытым способом по стенам.
  • Светодиодные лампы были разработаны в 60-х гг. для промышленных целей. Они имели небольшую мощность и не могли освещать территорию как следует. Однако сегодня именно это направление считается самым перспективным.
  • В 1983 г. появились компактные люминесцентные лампочки. Их изобретение было особенно важно в условиях необходимости экономии электроэнергии. К тому же, они не требуют дополнительной пусковой аппаратуры и подходят к стандартным патронам для ламп накаливания.
  • Не так давно сразу две фирмы из Америки создали для потребителей флуоресцентные лампы с возможностью очищения воздуха и удаления неприятных запахов. Поверхность их покрыта двуокисью титана, которая, облучаясь, запускает фотокаталитическую реакцию.

Видео как делают лампы накаливания на старых заводах.