Потери электроэнергии в электрических сетях. Определение потерь мощности и электроэнергии в линии и в трансформаторе

МЕТОДЫ РАСЧЕТА ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ

При передаче электроэнергии с шин электростанций до потребителей часть электроэнергии расходуется на нагрев проводников, создание электромагнитных полей и другие эффекты, сопутствующие переменному току. Бόльшая часть этих расходов, которые в дальнейшем будем называть потерями электроэнергии, приходится на нагрев проводников.

Термин “потери энергии” следует понимать как технологический расход электроэнергии на её передачу. Именно по этой причине вместо термина “потери электроэнергии” в отчётных документах энергосистем используется термин “технологический расход электроэнергии при передаче по электрическим сетям ”.

В линии, работающей с постоянной нагрузкой и имеющей потери активной мощности ΔР , потери электроэнергии за время t составят

Если же нагрузка в течение года изменяется, то потери электроэнергии можно рассчитать различными способами.

Наиболее точный метод расчёта потерь электроэнергии ΔW – это определение их по графику нагрузок ветви, причём расчёт потерь мощности производится для каждой ступени графика. Этот метод называют методом графического интегрирования. При расчёте за каждый час получается почасовой расчёт потерь электроэнергии.

Различают суточные и годовые графики нагрузок. На рис. 7.3 приведены летний и зимний суточные графики активной и реактивной нагрузок.

Рис. 7.3. Графики нагрузок: а – зимний суточный; б – летний суточный;

в – по продолжительности

Годовой график строится на основе характерных суточных графиков за весенне-летний и осенне-зимний периоды. Это пример упорядоченного графика, т.е. такого, в котором все значения нагрузки расположены в порядке убывания (рис. 7.3). В результате получают годовой график нагрузки, который показывает продолжительность работы при данной нагрузке. Поэтому такой график называется графиком по продолжительности .

По годовому графику нагрузок можно определить потери электроэнергии за год. Для этого определяют потери мощности и электроэнергии для каждого режима.

После подсчета потерь мощности в каждом режиме получают суммарные потери электроэнергии за год, суммируют все потери при различных режимах

, (7.7)

где ΔР i – потери мощности на i -ой ступени графика нагрузок;

Δt i – длительность i -ой ступени графика нагрузок.

Величина потери мощности находится по соотношению

где S i – полная мощность на i- ой ступени графика нагрузок;

U i – линейное напряжение на i- ой ступени графика нагрузок.

Потери мощности и электроэнергии в трансформаторе за время Δt i:

;

,

где ΔР к и ΔР x – потери соответственно в меди и стали трансформатора;

S 2 i – нагрузка на вторичной стороне трансформатора на i -ой ступени графика;

S ном – номинальная мощность трансформатора.

При k параллельно работающих идентичных трансформаторах

. (7.9)

Потери электроэнергии за год

. (7.10)

В зависимости от степени равномерности графика нагрузок число параллельно включенных трансформаторов k может быть различным.

Достоинством метода определения потерь по графику нагрузки является высокая точность. Недостатком метода следует считать отсутствие информации о графиках нагрузок для всех ветвей сети. Кроме того, стремление к точности расчёта вызывает увеличение числа ступеней в графике нагрузки, а это, в свою очередь, приводит к повышению трудоемкости расчёта.

Одним из наиболее простых методов определения потерь является расчёт потерь электроэнергии по времени наибольших потерь . Из всех режимов выбирается режим, в котором потери мощности наибольшие. Рассчитывая этот режим, получают потери мощности в нём ΔР нб. Потери энергии за год находят умножением этих потерь мощности на время наибольших потерь τ :

Время наибольших потерь – это время, за которое при работе с наибольшей нагрузкой потери электроэнергии были бы те же, что и при работе по действительному графику нагрузки:

где N – число ступеней нагрузки.

Можно установить связь между потерями электроэнергии и электроэнергией, полученной потребителем.

Энергия, полученная потребителем за год, равна

где Р нб – наибольшая потребляемая нагрузкой мощность;

Т нб – это время в часах, за которое при работе с наибольшей нагрузкой потребитель получал бы то же количество электроэнергии, что и при работе по реальному графику.

Рис. 7.4. Определение ΔW по графику нагрузок и по τ :

а – схема замещения линии; б, г – трехступенчатый и многоступенчатый графики нагрузок; в, д – трехступенчатый и многоступенчатый графики S 2

Из графиков, приведённых на рис. 7.4 видно, что значения τ и Т нб в общем случае не совпадают. Например, Т нб представляет собой абсциссу прямоугольника, площадь которого равна площади трёхступенчатого графика на рис. 7.4,б или многоступенчатого графика на рис. 7.4,г.

Построим график S 2 = f(t) (рис. 7.4,в). Предположим, что потери мощности i -ой ступени графика приближённо определяются по номинальному напряжению, т.е. вместо (7.8) будем использовать следующее выражение

Учитывая, что r л / = соnst, следует заметить, что потери электроэнергии за время Δt i в определённом масштабе равны .

Потери электроэнергии за год в определённом масштабе равны площадям фигур на рис. 6.4, в и д.

Время наибольших потерь τ представляет собой абсциссу прямоугольника, площадь которого равна площади трёхступенчатого графика на рис. 7.4,в или многоступенчатого графика на рис. 7.4,д. Аналогично (7.13) получаем

.

Время наибольшей нагрузки из (7.13)

.

Потери электроэнергии в трансформаторах рассчитывают по формуле

, (7.14)

где

Т = 8760 ч – число часов в году.

Выражение можно применять лишь при постоянном числе включённых на параллельную работу трансформаторов, т.е. К = const .

Поскольку мощность потребления Р ~ I×cosφ , а потери мощности ΔР ~ I 2 , то становится очевидным несовподение значений времени наибольшей нагрузки Т нб и времени наибольших потерь τ (рис. 7.4). Существуют эмпирические формулы, связывающие между собой τ и Т нб . Для ряда характерных нагрузок можно расчётным путём построить зависимости τ = f (Т нб, cosφ ), приведённые на рис. 7.5.

Рис. 7.5. Зависимости τ от Т нб и cosφ

Порядок расчёта потерь по методу τ, т.е. по времени наибольших потерь, следующий:

1) находят время наибольшей нагрузки, используя годовой график;

2) из графических зависимостей τ = f (Т нб, cosφ) , приведённых в справочной литературе, находят время наибольших потерь;

3) определяют потери в режиме наибольшей нагрузки ΔР нб ;

4) по соотношению ΔW = ΔР нб × τ находят потери энергии за год.

Метод расчёта по времени наибольших потерь был одним из самых распространённых до широкого внедрения ЭВМ. В основу метода положены допущения, что максимальные потери энергии в элементе сети соответствуют максимуму нагрузки системы и графики активных и реактивных мощностей подобны, т.е. cosφ = const. При использовании эмпирических зависимостей τ от Т нб и cosφ лишь частично учитывается конфигурация графиков нагрузки. Сделанные допущения приводят к большим погрешностям этого метода. Кроме того, по методу τ нельзя рассчитывать потери в линиях со стальными проводами, сопротивление которых переменно.

Дальнейшее повышение точности расчёта потерь привело к разработке метода τ P и τ Q . При этом методе в величине ΔР нб разделяются потери мощности от протекания по сети активной и реактивной мощностей.

Расчётное соотношение имеет вид

ΔW = ΔP P × τ P + ΔP Q × τ Q ,

где ΔР р, ΔР Q – составляющие потерь мощности от протекания по сети активной и реактивной мощностей.

Длина линии (м) / Материал кабеля:

Медь Алюминий

Сечение кабеля (мм?):

0,5 мм? 0,75 мм? 1,0 мм? 1,5 мм? 2,5 мм? 4,0 мм? 6,0 мм? 10,0 мм? 16,0 мм? 25,0 мм? 35,0 мм? 50,0 мм? 70,0 мм? 95,0 мм? 120 мм?

Мощность нагрузки (Вт) или ток (А):

Напряжение сети (В):

Мощность

1 фаза

Коэффициент мощности (cos?):

Ток

3 фазы

Температура кабеля (°C):


Во время проектирования электрических сетей и систем со слабыми токами довольно часто требуются расчеты потерь напряжения в кабелях и проводах. Данные вычисления необходимы для того чтобы выбрать кабель с наиболее оптимальным . При неправильном выборе проводника система электроснабжения очень быстро выйдет из строя или вообще не запустится. Чтобы избежать возможных ошибок, рекомендуется использовать онлайн калькулятор расчета потерь напряжения. Данные, полученные с помощью калькулятора, обеспечат устойчивую и безопасную работу линий и сетей.

Причины энергопотери при передаче электроэнергии

Существенные потери происходят в результате излишнего рассеивания. Из-за лишнего тепла кабель может сильно нагреваться, особенно при больших нагрузках и неправильных расчетах потерь электричества. Под действием избыточного тепла наступает повреждение изоляции, создается реальная угроза здоровью и жизни людей.

Потери электроэнергии нередко происходят из-за слишком большой протяженности кабельных линий, при большой мощности нагрузки. В случае продолжительной эксплуатации, существенно возрастают расходы на оплату электричества. Неправильные расчеты способны вызвать сбои в работе оборудования, например, охранной сигнализации. Потери напряжения в кабеле приобретают важное значение, когда источник питания оборудования имеет низкое напряжение постоянного или переменного тока, номиналом от 12 до 48В.

Как рассчитать потери напряжения

Избежать возможных проблем поможет калькулятор расчета потери напряжения, работающий в онлайн режиме. В таблицу исходных данных помещаются данные о длине кабеля, его сечении и материале, из которого он изготовлен. Для расчетов потребуются сведения о мощности нагрузки, напряжении и токе. Кроме того, учитывается коэффициент мощности и температурные показатели кабеля. После нажатия кнопки появляются данные о энергопотерях в процентах, показатели сопротивления проводника, реактивной мощности и напряжения, испытываемого нагрузкой.

Основной формулой расчета является следующая: ΔU=IхRL, в которой ΔU означает потери напряжения на расчетной линии, I является потребляемым током, определяемым преимущественно параметрами потребителя. RL отражает сопротивление кабеля, в зависимости от его длины и площади сечения. Именно последнее значение играет решающую роль при потере мощности в проводах и кабелях.

Возможности для снижения потерь

Основным способом снижения потерь в кабеле, является увеличение площади его сечения. Кроме того, можно уменьшить длину проводника и снизить нагрузку. Однако последние два способа не всегда можно использовать, в силу технических причин. Поэтому во многих случаях единственным вариантом остается снижение сопротивления кабеля за счет увеличения сечения.

Существенным недостатком большого сечения считается заметный рост материальных затрат. Разница становится ощутимой, когда кабельные системы растягиваются на большие расстояния. Поэтому на стадии проектирования нужно сразу же подбирать кабель с нужным сечением, для чего понадобятся расчеты потери мощности с помощью калькулятора. Данная программа имеет большое значение при составлении проектов на электромонтажные работы, поскольку ручные вычисления занимают много времени, а в режиме онлайн калькулятора подсчет занимает буквально несколько секунд.

    Потери мощности в элементах сети.

    Расчет потерь мощности в линиях электропередач.

    Расчет потерь мощности в ЛЕП с равномерно распределенной нагрузкой.

    Расчет потерь мощности в трансформаторах.

    Приведенные и расчетные нагрузки потребителей.

    Расчет потерь электроэнергии.

    Мероприятия по снижению потерь мощности.

Потери мощности в элементах сети

Для количественной характеристики работы элементов электрической сети рассматриваются ее рабочие режимы. Рабочий режим – это установившееся электрическое состояние, которое характеризуется значениями токов, напряжений, активной, реактивной и полной мощностей.

Основной целью расчета режимов является определение этих параметров, как для проверки допустимости режимов, так и для обеспечения экономичности работы элементов сетей.

Определение значений токов в элементах сети и напряжений в ее узлах начинается с построения картины распределения полной мощности по элементу, т.е. с определения мощностей в начале и конце каждого элемента. Такую картину называют потокораспределением.

Рассчитывая мощности в начале и в конце элемента электрической сети, учитывают потери мощности в сопротивлениях элемента и влияние его проводимостей.

Расчет потерь мощности в линиях электропередач

Потери активной мощности на участке ЛЕП (см. рис. 7.1) обусловлены активным сопротивлением проводов и кабелей, а также несовершенством их изоляции. Мощность, теряемая в активных сопротивлениях трехфазной ЛЕП и расходуемая на ее нагрев, определяется по формуле:

где
полный, активный и реактивный токи в ЛЕП;

P, Q, S – активная, реактивная и полная мощности в начале или конце ЛЕП;

U

R – активное сопротивление одной фазы ЛЕП.

Потери активной мощности в проводимостях ЛЕП обусловлены несовершенством изоляции. В воздушных ЛЕП – появлением короны и, в очень незначительной степени, утечкой тока по изоляторам. В кабельных ЛЕП – появлением тока проводимости а его абсорбции. Рассчитываются потери по формуле:

,

где U – линейное напряжение в начале или конце ЛЕП;

G – активная проводимость ЛЕП.

При проектировании воздушных ЛЕП потери мощности на корону стремятся свести к нулю, выбирая такой диаметр провода, когда возможность возникновения короны практически отсутствует.

Потери реактивной мощности на участке ЛЕП обусловлены индуктивными сопротивлениями проводов и кабелей. Реактивная мощность, теряемая в трехфазной ЛЕП, рассчитывается аналогично мощности, теряемой в активных сопротивлениях:

Генерируемая емкостной проводимостью зарядная мощность ЛЕП рассчитывается по формуле:

,

где U – линейное напряжение в начале или конце ЛЕП;

B – реактивная проводимость ЛЕП.

Зарядная мощность уменьшает реактивную нагрузку сети и тем самым снижает потери мощности в ней.

Расчет потерь мощности в леп с равномерно распределенной нагрузкой

В линиях местных сетей (
) потребители одинаковой мощности могут располагаться на одинаковом расстоянии друг от друга (например, источники света). Такие ЛЕП называются линиями с равномерно распределенной нагрузкой (см. рис. 7.2).

В равномерно нагруженной линии трехфазного переменного тока длиной L с суммарной токовой нагрузкойI плотность тока на единицу длины составитI/L . При погонном активном сопротивленииr 0 потери активной мощности составят:

Если бы нагрузка была сосредоточена в конце, то потери мощности определялись бы как:

.

Сравнивая приведенные выражения, видим, что потери мощности в линии с равномерно распределенной нагрузкой в 3 раза меньше.

Введение

Обзор литературы

1.2 Нагрузочные потери электроэнергии

1.3 Потери холостого хода

1.4 Климатические потери электроэнергии

2. Методы расчета потерь электроэнергии

2.1 Методы расчета потерь электроэнергии для различных сетей

2.2 Методы расчета потерь электроэнергии в распределительных сетях 0,38-6-10 кВ

3. Программы расчета потерь электроэнергии в распределительных электрических сетях

3.1 Необходимость расчета технических потерь электроэнергии

3.2 Применение программного обеспечения для расчета потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ

4. Нормирование потерь электроэнергии

4.1 Понятие норматива потерь. Методы установления нормативов на практике

4.2 Нормативные характеристики потерь

4.3 Порядок расчета нормативов потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ

5. Пример расчета потерь электроэнергии в распределительных сетях 10 кВ

Заключение

Список литературы

Введение

Электрическая энергия является единственным видом продукции, для перемещения которого от мест производства до мест потребления не используются другие ресурсы. Для этого расходуется часть самой передаваемой электроэнергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии в электрических сетях до этого уровня - одно из важных направлений энергосбережения .

В течение всего периода с 1991 г. по 2003 г. суммарные потери в энергосистемах России росли и в абсолютном значении, и в процентах отпуска электроэнергии в сеть.

Рост потерь энергии в электрических сетях определен действием вполне объективных закономерностей в развитии всей энергетики в целом. Основными из них являются: тенденция к концентрации производства электроэнергии на крупных электростанциях; непрерывный рост нагрузок электрических сетей, связанный с естественным ростом нагрузок потребителей и отставанием темпов прироста пропускной способности сети от темпов прироста потребления электроэнергии и генерирующих мощностей.

В связи с развитием рыночных отношений в стране значимость проблемы потерь электроэнергии существенно возросла. Разработка методов расчета, анализа потерь электроэнергии и выбора экономически обоснованных мероприятий по их снижению ведется во ВНИИЭ уже более 30 лет. Для расчета всех составляющих потерь электроэнергии в сетях всех классов напряжения АО-энерго и в оборудовании сетей и подстанций и их нормативных характеристик разработан программный комплекс, имеющий сертификат соответствия, утвержденный ЦДУ ЕЭС России, Главгосэнергонадзором России и Департаментом электрических сетей РАО "ЕЭС России".

В связи со сложностью расчета потерь и наличием существенных погрешностей, в последнее время особое внимание уделяется разработке методик нормирования потерь электроэнергии.

Методология определения нормативов потерь еще не установилась. Не определены даже принципы нормирования. Мнения о подходе к нормированию лежат в широком диапазоне - от желания иметь установленный твердый норматив в виде процента потерь до контроля за "нормальными" потерями с помощью постоянно проводимых расчетов по схемам сетей с использованием соответствующего программного обеспечения.

По полученным нормам потерь электроэнергии устанавливаются тарифы на электроэнергию. Регулирование тарифов возлагается на государственные регулирующие органы ФЭК и РЭК (федеральную и региональные энергетические комиссии). Энергоснабжающие организации должны обосновывать уровень потерь электроэнергии, который они считают целесообразным включить в тариф, а энергетические комиссии - анализировать эти обоснования и принимать или корректировать их .

В данной работе рассмотрена проблема расчета, анализа и нормирования потерь электроэнергии с современных позиций; изложены теоретические положения расчетов, приведено описание программного обеспечения, реализующего эти положения, и изложен опыт практических расчетов.

Обзор литературы

Проблема расчета потерь электроэнергии волнует энергетиков уже очень долго. В связи с этим, в настоящее время выпускается очень мало книг по данной теме, т.к мало что изменилось в принципиальном устройстве сетей. Но при этом выпускается достаточно большое количество статей, где производится уточнение старых данных и предлагаются новые решения проблем, связанных с расчетом, нормированием и снижением потерь электроэнергии.

Одной из последних книг, выпущенных по данной теме, является книга Железко Ю.С. "Расчет, анализ и нормирование потерь электроэнергии в электрических сетях" . В ней наиболее полно представлена структура потерь электроэнергии, методы анализа потерь и выбор мероприятий по их снижению. Обоснованы методы нормирования потерь. Подробно описано программное обеспечение, реализующее методы расчета потерь.

Ранее этим же автором была выпущена книга "Выбор мероприятий по снижению потерь электроэнергии в электрических сетях: Руководство для практических расчетов" . Здесь наибольшее внимание было уделено методам расчета потерь электроэнергии в различных сетях и обосновано применение того или иного метода в зависимости от типа сети, а также мероприятиям по снижению потерь электроэнергии.

В книге Будзко И.А. и Левина М.С. "Электроснабжение сельскохозяйственных предприятий и населенных пунктов" авторы подробно рассмотрели проблемы электроснабжения в целом, сделав упор на распределительные сети, питающие сельскохозяйственные предприятия и населенные пункты. Также в книге даны рекомендации по организации контроля за потреблением электроэнергии и совершенствованию систем учета.

Авторы Воротницкий В.Э., Железко Ю.С. и Казанцев В.Н. в книге "Потери электроэнергии в электрических сетях энергосистем" рассмотрели подробно общие вопросы, относящиеся к снижению потерь электроэнергии в сетях: методы расчета и прогнозирования потерь в сетях, анализ структуры потерь и расчет их технико-экономической эффективности, планирование потерь и мероприятий по их снижению.

В статье Воротницкого В.Э., Заслонова С.В. и Калинкини М.А. "Программа расчета технических потерь мощности и электроэнергии в распределительных сетях 6 - 10 кВ" подробно описана программа для расчета технических потерь электроэнергии РТП 3.1 Ее главным достоинством является простота в использовании и удобный для анализа вывод конечных результатов, что существенно сокращает трудозатраты персонала на проведение расчета.

Статья Железко Ю.С. "Принципы нормирования потерь электроэнергии в электрических сетях и программное обеспечение расчетов" посвящена актуальной проблеме нормирования потерь электроэнергии. Автор делает упор на целенаправленное снижение потерь до экономически обоснованного уровня, что не обеспечивает существующая практика нормирования. Также в статье выносится предложение использовать нормативные характеристики потерь, разработанные на основе детальных схемотехнических расчетов сетей всех классов напряжений. При этом расчет может производится при использовании программного обеспечения.

Целью другой статьи этого же автора под названием "Оценка потерь электроэнергии, обусловленных инструментальными погрешностями измерения" не является уточнение методики определения погрешностей конкретных измерительных приборов на основе проверки их параметров. Автором в статье проведена оценка результирующих погрешностей системы учета поступления и отпуска электроэнергии из сети энергоснабжающей организации, включающей в себя сотни и тысячи приборов. Особое внимание уделено систематической погрешности, которая в настоящее время оказывается существенной составляющей структуры потерь.

В статье Галанова В.П., Галанова В.В. "Влияние качества электроэнергии на уровень ее потерь в сетях" уделено внимание актуальной проблеме качества электроэнергии, что оказывает существенное влияние на потери электроэнергии в сетях.

Статья Воротницкого В.Э., Загорского Я.Т. и Апряткина В.Н. "Расчет, нормирование и снижение потерь электроэнергии в городских электрических сетях" посвящена уточнению существующих методов расчета потерь электроэнергии, нормированию потерь в современных условиях, а также новым методам снижения потерь.

В статье Овчинникова А. "Потери электроэнергии в распределительных сетях 0,38 - 6 (10) кВ" делается упор на получение достоверной информации о параметрах работы элементов сетевого хозяйства, и прежде всего о загрузке силовых трансформаторов. Данная информация, по мнения автора, поможет существенно снизить потери электроэнергии в сетях 0,38 - 6 - 10 кВ.

1. Структура потерь электроэнергии в электрических сетях. Технические потери электроэнергии

1.1 Структура потерь электроэнергии в электрических сетях

При передаче электрической энергии в каждом элементе электрической сети возникают потери. Для изучения составляющих потерь в различных элементах сети и оценки необходимости проведения того или иного мероприятия, направленного на снижение потерь, выполняется анализ структуры потерь электроэнергии.

Фактические (отчетные) потери электроэнергии ΔW Отч определяют как разность электроэнергии, поступившей в сеть, и электроэнергии, отпущенной из сети потребителям. Эти потери включают в себя составляющие различной природы: потери в элементах сети, имеющие чисто физический характер, расход электроэнергии на работу оборудования, установленного на подстанциях и обеспечивающего передачу электроэнергии, погрешности фиксации электроэнергии приборами ее учета и, наконец, хищения электроэнергии, неоплату или неполную оплату показаний счетчиков и т.п.

Особенности расчета нормативов потерь электроэнергии для территориальных сетевых организаций

Папков Б. В., доктор техн. наук, Вуколов В. Ю., инж. НГТУ им. Р. Е. Алексеева, Нижний Новгород

Рассмотрены особенности расчета нормативов потерь для территориальных сетевых организаций в современных условиях. Приведены результаты исследования методов расчета потерь в сетях низкого напряжения.

Вопросы, связанные с транспортом и распределением электрической энергии и мощности по электрическим сетям, решаются в условиях естественного монополизма территориальных сетевых организаций (ТСО). Экономическая эффективность их функционирования во многом зависит от обоснованности материалов, предоставляемых в службы государственного регулирования тарифов. При этом серьезных усилий требует расчет нормативов потерь электрической энергии.

В остается нерешенным ряд проблем, возникающих на этапах подготовки обосновывающих материалов по нормативам потерь, их экспертизы, рассмотрения и утверждения. В настоящее время ТСО приходится преодолевать следующие трудности:

необходимость сбора и обработки достоверных исходных данных для расчетов нормативов потерь;

недостаточное количество персонала для сбора и обработки данных измерений нагрузок электрических сетей, выявления бездоговорного и безучетного потребления электроэнергии;

нехватка современных приборов учета электроэнергии для достоверного расчета балансов электроэнергии как по сети в целом, так и по отдельным ее частям: подстанциям, линиям, выделенным участкам сети и т. п.;

отсутствие приборов учета электроэнергии для разделения потерь электроэнергии от собственного потребления и на оказание услуг по передаче электроэнергии субабонентам; специализированного программного обеспечения у ряда ТСО; необходимых материальных, финансовых и людских ресурсов для практической реализации программ и мероприятий по снижению потерь; нормативно-правовой базы для борьбы с бездоговорным и безучетным потреблением электроэнергии;

сложность и трудоемкость расчетов нормативов потерь (особенно в распределительных электрических сетях 0,4 кВ), практическая невозможность достоверной оценки их точности;

недостаточность проработки методов достоверной оценки технико-экономической эффективности мероприятий и программ снижения потерь электроэнергии;

трудности разработки, согласования и утверждения сводных прогнозных балансов электроэнергии на регулируемый период из-за отсутствия соответствующих методик и достоверной статистики по динамике составляющих баланса.

Особое внимание следует уделить расчету потерь электроэнергии в сетях 0,4 кВ вследствие их исключительной социальной важности (по России в целом они составляют около 40 % суммарной протяженности всех электрических сетей). На этом напряжении осуществляется потребление электрической энергии конечными электроприемниками: в большой химии - 40 - 50 %, в машиностроении - 90-95 %, в коммунально-бытовой сфере - практически 100%. От надежности работы сетей 0,4 кВ и их загрузки в значительной степени зависят качество и экономичность электроснабжения потребителей.

Расчет нормативов потерь в сетях 0,4 кВ - один из наиболее трудоемких. Это связано со следующими особенностями:

разнородностью исходной схемотехнической информации и низкой ее достоверностью;

разветвленностью воздушных линий 0,4 кВ, при расчете потерь в которых требуется наличие поопорных схем с соответствующими параметрами;

динамикой изменения схемных и особенно режимных параметров;

исполнением участков сетей с различным числом фаз;

неравномерностью загрузки фаз; неодинаковостью фазных напряжений на шинах питающей ТП.

Необходимо подчеркнуть, что методы расчетов потерь мощности и электроэнергии в сетях 0,4 кВ должны быть в максимальной степени адаптированы к имеющимся в условиях эксплуатации сетей схемным и режимным параметрам с учетом объемов исходной информации.

Обследование 10 ТСО Нижегородской области, выполнение расчетов нормативов потерь, их экспертиза и утверждение позволяют структурировать создаваемые ТСО на следующие группы :

  1. правопреемники АО-энерго;
  2. создаваемые на базе служб главного энергетика промышленного предприятия в соответствии с ограничениями антимонопольного законодательства;
  3. создаваемые с целью обеспечения эксплуатации электрооборудования, оказавшегося "бесхозным" в ходе реализации рыночной реформы в сфере промышленного и сельскохозяйственного производства.

Появление организаций - правопреемников ранее существовавших АО-энерго - связано с реструктуризацией и ликвидацией РАО "ЕЭС России". Расчет и утверждение нормативов потерь для ТСО данной группы требуют минимального вмешательства сторонних исследователей, поскольку для них эта задача неновая: имеются довольно долгая предыстория, персонал с большим опытом расчетов, максимальная информационная обеспеченность. Методические материалы ориентированы главным образом на особенности эксплуатации именно этой группы ТСО.

Анализ проблем, связанных с определением нормативов потерь для предприятий второй группы, показывает, что сегодня остро не хватает персонала, готового применять не адаптированную к реальным условиям работы таких ТСО существующую методику расчета нормативов потерь. В данном случае целесообразно привлекать для расчетов и утверждения нормативов потерь внешние специализированные компании. При этом отпадает необходимость в дорогостоящем специальном сертифицированном программном обеспечении, имеющемся у сторонних исследователей. Если же рассматривать задачу утверждения тарифа на услуги транспорта электроэнергии по заводским сетям как более общую, в которой расчет норматива потерь является всего лишь ее составляющей (хотя и важной), то возникает юридическая проблема правомерности применения ретроспективной технико-экономической информации в условиях изменения формы обслуживания электрооборудования.

При расчете потерь в сетях 0,4 кВ таких ТСО наиболее остро стоит проблема разделения единой системы электроснабжения на транспортную и технологическую части. Под последней подразумеваются участки транспортной сети, обеспечивающие непосредственно конечное преобразование электроэнергии в иные ее виды. Учитывая реальное распределение точек подключения сторонних потребителей, объемы полезного отпуска по уровням напряжения и сложности расчета потерь в сетях 0,4 кВ, практически во всех случаях целесообразно полностью отнести эти сети к технологической части.

ТСО, относимые к третьей группе, образуются в результате вынужденных мер, предпринимаемых государством и частным бизнесом для ликвидации недопустимого положения, когда из-за отказа от непрофильных видов деятельности или банкротства различных предприятий большое количество электроустановок (в основном напряжением 10-6-0,4 кВ) было брошено прежними владельцами. В настоящее время техническое состояние многих таких электроустановок можно охарактеризовать как неудовлетворительное. Однако вывод их из работы невозможен вследствие социальной значимости. С учетом этого в регионах реализуется программа восстановления ветхих и "бесхозных" сетей, финансирование которой осуществляется, в том числе и централизованно, из федерального бюджета. В большинстве случаев электрооборудование принимается на баланс органами местного самоуправления, которые и решают задачу обеспечения его нормального функционирования. На основании опыта Нижегородской области можно сделать вывод, что главное направление использования указанного оборудования - передача его в аренду государственным и частным специализированным компаниям.

Из-за рассредоточения сетей таких ТСО по разным административным районам для решения задач передачи и распределения электроэнергии, обеспечения работоспособности электрических сетей (монтаж, наладка, ремонт и техническое обслуживание электротехнического оборудования и средств защиты электрических сетей) возможны два пути: создание собственной эксплуатационно-ремонтной службы (что вследствие охвата большой территории приведет к увеличению длительности обслуживания оборудования) или заключение договоров на техническое обслуживание со службами АО-энерго. При этом оперативность будет обеспечена, но целесообразность существования организаций такого типа теряет смысл. В настоящее время ТСО третьей группы проводят работы по установке узлов учета электроэнергии, финансируемые в рамках областной программы восстановления ветхих сетей и из иных источников. Решаются вопросы организации системы сбора и обработки информации о показаниях счетчиков электрической энергии с привлечением специализированных организаций. Однако большие стоимость и объем необходимых работ, а также имеющиеся противоречия между участниками процесса формирования системы учета электроэнергии потребуют длительного времени на их полное завершение.

В условиях действующей системы тарифо- образования на транспорт электрической энергии основу расчета составляют информация о технико-экономических характеристиках используемого электрооборудования и ретроспективная информация о фактических издержках на осуществление функционирования ТСО в предыдущем (базовом) периоде. Для вновь создаваемых ТСО третьей группы это - труднопреодолимое препятствие.

С точки зрения расчета норматива электрических потерь ТСО данного класса создают наибольшие проблемы. Основные из них:

практически нет паспортных данных на электрооборудование;

отсутствуют однолинейные схемы электрических сетей, поопорные схемы воздушных линий электропередачи (BJI) и схемы трасс проложенных кабельных линий (КЛ);

часть участков ВЛ и КЛ таких сетей не имеют непосредственных связей с другим оборудованием рассматриваемых ТСО и являются элементами присоединений иных ТСО.

В данной ситуации можно использовать методы принятия решений в условиях недостатка и неопределенности исходной информации. Это позволяет достичь позитивных результатов уже потому, что дается обоснованное предпочтение тем вариантам, которые оказываются наиболее гибкими и обеспечивающими наибольшую эффективность. Один из них - метод экспертных оценок. Его применение для каждой конкретной ТСО третьей группы является единственно возможным способом количественной оценки показателей, необходимых для расчета потерь электроэнергии на начальном этапе функционирования сетевых организаций.

В качестве примера рассмотрим особенности расчета нормативов потерь электроэнергии для организации (условно названной ТСО-энер- го), электрооборудование которой рассредоточено на территории 17 районов Нижегородской области. Источниками исходной информации об электрооборудовании и режимах работы ТСО-энерго к моменту начала обследования были договоры аренды электрооборудования и сооружений, договоры на техническое и оперативное обслуживание, заключенные его администрацией с филиалами ОАО "Нижновэнерго" на местах и с гарантирующим поставщиком электроэнергии по региону. Ввиду невозможности на начальном этапе функционирования ТСО-энерго в качестве электросетевой организации осуществлять учет транспортируемой электрической энергии с помощью электрических счетчиков объемы передаваемой электроэнергии определяли расчетным путем.

В ходе обследования электроустановок была получена дополнительная информация о сетях 0,4 кВ, питающихся от ТП, арендуемых ТСО-энерго у администраций только двух районов области. В результате анализа полученных данных эксперты качественно определили конфигурацию сетей 0,4 кВ исследуемой организации, провели разделение общей длины (общего числа пролетов) фидеров 0,4 кВ на магистральные участки и ответвления (с учетом числа фаз), получили средние значения таких параметров, как число фидеров 0,4 кВ на одно ТП (2,3); сечение головного участка магистрали фидера ЛЭП 0,4 кВ (38,5 мм 2), сечения кабельных (50 мм 2) и воздушных (35 мм") ЛЭП 6 кВ.

Информация об электрических сетях 0,4 кВ всех 17 районов структурирована на основе экстраполяции результатов анализа поопорных схем электрических сетей по выборке из двух. Согласно экспертному заключению, данные районы являются типовыми для ТСО- энерго, и экстраполяция результатов выборки не искажает общую картину конфигурации сетей организации в целом. Ниже приведены полученные значения норматива потерь электроэнергии AW Hn3 , тыс. кВт ч (%), на период регулирования, равный 1 году, для сетей 6- 10 и 0,4 кВ:

    6- 10 кВ 3378,33 (3,78)

    0,4 кВ 12452,89 (8,00)

    Всего 15831,22 (9,96)

В сложившейся ситуации с учетом состояния электроустановок большинства ТСО наи

более эффективным, а иногда и единственно возможным для расчета потерь в сетях 0,4 кВ был метод оценки потерь по обобщенной информации о схемах и нагрузках сети. Однако согласно последней редакции его использование возможно лишь при питании сети низкого напряжения не менее чем от 100 ТП, что существенно ограничивает применение метода для расчета потерь в сетях ТСО. Здесь возможна ситуация, когда полученный расчетным путем и обоснованный наличием подтверждающих документов норматив потерь электроэнергии в сетях низкого напряжения будет значительно ниже отчетных потерь в них ввиду сложности, а иногда и невозможности сбора исходной информации для расчетов. Это в дальнейшем может привести к банкротству ТСО и появлению "бесхозных" электрических сетей. Поэтому были исследованы разные методы расчета нормативов потерь электроэнергии в сетях низкого напряжения с целью проведения сравнительного анализа точности расчета каждого из предлагаемых в подходов.

Для расчета нормативов потерь электроэнергии в сетях 0,4 кВ при известных их схемах применяются те же алгоритмы, что и для сетей 6-10кВ, которые реализуются по методу средних нагрузок или методу числа часов наибольших потерь мощности. Вместе с тем существующими методиками предусмотрены специальные оценочные методы, определяющие порядок расчета нормативов потерь в сетях низкого напряжения (метод оценки потерь по обобщенной информации о схемах и нагрузках сети, а также метод оценки потерь с использованием измеренных значений потерь напряжения) .

Для проведения численного анализа точности расчетов указанными методами определены потери электрической энергии на основе схемы электроснабжения бытовых потребителей 0,4 кВ. Расчетная модель сети 0,4 кВ представлена на рисунке (где Н - нагрузка). Наличие полного объема информации о ее конфигурации и режиме позволяет рассчитать потери электроэнергии AW пятью методами. Результаты расчетов представлены в табл. 1.

Промышленная энергетика №i, 2010

Таблица 1

        Метод расчета
A W, кВт ч (%)
    8 W, %
Метод характерных сезонных суток 11997,51 (3,837)
Метод средних нагрузок 12613,638 (4,034)
Метод числа часов наибольших потерь мощности 12981,83 (4,152)
Метод оценки потерь с использованием измеренных значений потерь напряжения 8702,49 (2,783)
Метод оценки потерь по обобщенной информации о схемах и нагрузках сети 11867,21 (3,796)

Наиболее достоверны результаты, полученные поэлементным расчетом сети 0,4 кВ методом характерных сезонных суток. Однако при этом необходимо иметь полную информацию о конфигурации сети, марках и сечениях проводов, токах в фазных и нулевых проводах, получение которой весьма затруднительно. Более простым с этой точки зрения является расчет потерь электроэнергии методом средних нагрузок или методом числа часов наибольших потерь мощности. Но использование данных методов также требует весьма трудоемкого поэлементного расчета сети при наличии исходной информации о токах и потоках активной мощности по линиям, сбор которой для многих сетевых организаций также практически невозможен. Анализ результатов потерь в расчетной модели путем применения метода средних нагрузок и метода числа часов наибольших потерь мощности показывает завышение потерь электроэнергии по сравнению с результатом, полученным методом характерных сезонных суток.

Использование метода оценки потерь электроэнергии по измеренным значениям потерь напряжения в условиях рассматриваемой модели сети приводит к существенному занижению норматива рассматриваемых потерь. Потери напряжения в линиях 0,4 кВ не могут быть измерены в полном объеме, а их достоверность не может быть оценена при проверке результатов расчета. В связи с этим метод является скорее теоретическим, он неприменим для практических расчетов, результаты которых должны быть приняты регулирующим органом.

Поэтому согласно проведенным исследованиям наиболее эффективным представляется метод оценки потерь электроэнергии по обобщенной информации о схемах и нагрузках сети. Он наименее трудоемок с точки зрения сбора достаточного для расчета количества исходной схемотехнической информации. Результаты при его использовании в расчетной модели имеют малое расхождение с данными поэлементного расчета даже на уровне определения потерь в двух фидерах, питающихся от одной ТП. С учетом реальных схем низкого напряжения существующих ТСО, в которых количество фидеров 0,4 кВ достигает нескольких десятков и сотен, погрешность применения данного метода оценки потерь будет еще меньше, чем на уровне рассмотренной расчетной модели. Другим достоинством этого метода является возможность определения потерь в произвольном количестве линий электропередачи одновременно. К основным его недостаткам следует отнести невозможность детального анализа потерь в сети 0,4 кВ и разработки на основании полученных данных мероприятий по их снижению. Однако при утверждении нормативов потерь электроэнергии в целом по сетевой организации в Министерстве энергетики РФ данная задача - не главная.

Положительный опыт обследования ряда сетевых организаций позволяет проанализировать динамику изменения нормативов потерь электрической энергии в сетях рассматриваемых ТСО. В качестве объектов исследования выбрали две организации второй группы (условно обозначенные ТСО-1 и ТСО-2) и шесть третьей группы (ТСО-3 - ТСО-8). Итоги расчета их нормативов потерь в 2008 - 2009 гг. представлены в табл. 2.

В результате было установлено, что невозможно выделить единые тенденции изменения нормативов потерь в целом для рассмотрен-

Таблица 2

Организация Нормативы потерь в целом по ТСО, %
    в 2008 г.
    в 2009 г.
ТСО-1
ТСО-2
ТСО-3
ТСО-4
ТСО-5
ТСО-6
ТСО-7
ТСО-8
В целом

ных организаций, поэтому необходима разработка мероприятий по снижению потерь для каждой ТСО в отдельности.

        Выводы

  1. Основными направлениями повышения обоснованности нормирования потерь электроэнергии в электрических сетях являются разработка, создание и внедрение автоматизированных информационно-измерительных систем коммерческого учета для рынков электроэнергии, сетевых организаций и предприятий.
  2. Наиболее простой и эффективный, а иногда и единственно возможный для использования на данном этапе развития сетевых организаций - метод оценки потерь по обобщенной информации о схемах и нагрузках сети.
  3. Детальный анализ результатов расчета технических потерь в сетях 0,4 кВ обусловливает эффективность разработки мероприятий по их снижению, поэтому необходимо продолжение исследований методов расчета потерь в этих сетях.

      Список литературы

    1. Порядок расчета и обоснования нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям (утвержден приказом Мин- промэнерго России от 4 октября 2005 г. № 267). - М.: ЦПТИ и ТО ОРГРЭС, 2005.
    2. Вуколов В. Ю., Папков Б. В. Особенности расчета нормативов потерь для электросетевых организаций. Энергосистема: управление, конкуренция, образование. - В кн.: Сб. докладов III международной научно-практической конференции. Т. 2. Екатеринбург: УГТУ-УПИ, 2008.