Можно ли сделать своими руками станок с ЧПУ? Пошаговая инструкция сборки станка с чпу своими руками Самый простой чпу станок своими руками.

В данной статье рассматриваются самодельные станки и приспособления для домашней мастерской. Здесь подробно изложены особенности самых популярных и необходимых инструментов, сделанных своими руками, а также приспособлений для мастерской или гаража, пошаговые технологии их изготовления и прочие полезные рекомендации по этой теме.

Многие владельцы домашних мастерских создают своими руками необходимое им оборудование

Самодельные станки и приспособления для домашней мастерской: общая информация

Каждый владелец гаража или мастерской в зависимости от своих потребностей сам подбирает оснащение. Многие из них знают как делаются самодельные станки и приспособления для гаражей, поэтому обходятся собственными силами при обустройстве помещения, подгоняя уже под себя технические особенности конструкций.

Так, при создании металлического чертежи и размеры изделия на них можно подогнать под параметры помещения и другие условия. Даже для небольшой домашней мастерской потребуется отвести достаточно пространства, чтобы разместить хотя бы конструкцию универсального складного верстака и минимальный набор инструментов. Необходимая площадь для этого составляет минимум 3-5 м².


Полезный совет! Мастерскую лучше обустраивать в отдельном помещении, чтобы шум от работы самодельного шлифовального станка по дереву и другого инструмента не мешал жильцам. Под размещение станков можно отвести гараж, площади которого достаточно для комфортной работы и установки оборудования.

Изготовление приспособлений для хранения инструмента: полки, стеллажи

На самом деле очень сложно добиться оптимальных рабочих условий. Желательно, чтобы размер помещения был не менее 6,5 м. Для обустройства мастерской можно сделать пристройку к дому или гаражу. Это решение будет самым выгодным при любом раскладе.

Перед тем как проектировать чертеж складного верстака своими руками, который имеет самую габаритную конструкцию (поэтому его размеры учитываются в первую очередь), стоит определиться с некоторыми моментами:

  • обозначить, какие виды работ будут выполняться в мастерской;
  • определить список необходимого инструментария и оборудования.

С помощью крепления инструмента на стене можно существенно сэкономить полезное пространство в мастерской. Для этого прекрасно подойдут полки или стеллажи. Можно удачно скомпоновать эти конструкции, добившись самого рационального распределения площади.


В целях экономии пространства можно обзавестись специальным приспособлением для циркулярной пилы своими руками, изготовленным на основе обычной дрели. Такой универсальный станок может выполнять сразу несколько функций, объединяя в себе возможности:

Рабочий стол можно объединить с для столярного верстака и укомплектовать его выдвижными ящиками, чтобы хранить мелкие инструменты.

Полки для инструментов своими руками: популярные конструкции

Металлические конструкции более прочны и надежны, а деревянные – доступны в цене.
Существует несколько вариантов рационального хранения инструментов:

  • настенные полки;
  • стеллажи для инструмента своими руками;
  • потолочные полки подвесного типа;
  • полки-щиты для подвешивания мелких инструментов.


Полезный совет! Полка-щит очень удобна для проведения слесарных и столярных работ. На нее можно установить держатели или крючки для инструмента, небольшие полочки или емкости для крепежных элементов. Целесообразнее всего подвесить такую конструкцию над складным столярным верстаком. Можно даже подвести дополнительное освещение. Лучше для этого использовать небольшую лампу.

Технология изготовления полки под инструменты своими руками (щит):

  1. Из фанерного листа выпиливается щит, размечаются на нем места, где будут установлены полочки.
  2. Используя лобзик, выпиливаются полки, имеющие боковые стенки. Длина этих боковушек должна совпадать с длиной щита.
  3. Выполняется сборка полок под инструменты и фиксация их на поверхности щита с помощью длинных самонарезающих винтов.
  4. Осуществляется монтаж крючков. В щите выполняются отверстия, куда устанавливаются дюбели. В них нужно вкрутить специальные крючки, оснащенные резьбой. Предварительно стоит распределить весь инструмент и обозначить точки, где он будет висеть.
  5. Производится монтаж кронштейнов или проушин на задней стенке конструкции.

Останется только закрепить полку-щит на стене. Чтобы проушины не соскальзывали с анкеров, рекомендуется фиксировать их специальными шайбами.


Изготовление столярного верстака своими руками: чертежи, видео, технология

На чертеже столярного верстака должны присутствовать следующие детали:

  1. Рабочая поверхность – для ее изготовления рекомендуется взять доску толщиной 6 см и более. Подойдут такие породы дерева, как дуб, граб или бук. Допускается использование нескольких узких досок, предварительно обработанных олифой.
  2. На верхней крышке крепится конструкция самодельных тисков своими руками, которые также следует внести в чертеж. Если предполагается установка изделия крупного размера, для его изготовления лучше взять древесину. Допускается изготовление и последующий монтаж небольших слесарных тисков своими руками из стали.
  3. Опоры верстака – можно изготовить из липы или сосны. Между ними обязательно следует установить продольное соединение в виде планок. Это повысит устойчивость стола.
  4. Полки для хранения инструментов – крепятся под верстаком. Конструкции могут быть фиксированными или выдвижными.

Полезный совет! Линейный параметр верстака может превышать 1 м. Увеличенный размер конструкции можно использовать для установки своими руками столярных тисков в количестве двух штук.

Существует несколько модификаций верстаков:

  • мобильный;
  • стационарный;
  • складной (универсальный).

Ознакомившись с устройством столярного верстака, можно приступать к его изготовлению.

Технология и чертежи столярного верстака своими руками: как сделать простую конструкцию

Пошаговая технология изготовления конструкции:

  1. Для изготовления крышки деревянного столярного верстака потребуется взять толстые доски. Размер нужно подобрать так, чтобы в результате их соединения получился щит с параметрами 0,7х2 м (длина может быть и менее 2 м). В качестве крепежных элементов следует использовать длинные гвозди, которые нужно забить с лицевой стороны и подогнуть с изнанки.
  2. Можно выполнить отделку крышки, закрепив по ее нижнему периметру брус сечением 50х50 мм.
  3. В зависимости от размеров столярного верстака (его крышки) располагаются вертикальные опоры. Для их изготовления берется брус (12х12х130 см). На этом этапе необходимо учесть высоту рабочей поверхности, ведь она должна быть удобной. Верхняя граница опоры должна проходить на уровне опущенных рук. Впоследствии, за счет монтажа крышки, к этому показателю прибавится около 8-10 см. Разметку под установку брусьев следует нанести на землю и вкопать эти элементы на глубину в 0,2-0,35 м.
  4. Далее осуществляется монтаж каркасной части и крышки верстака из дерева своими руками. Установленные опорные брусья нужно соединить попарно. Для этого используются широкие доски, фиксируемые на высоте 0,2-0,4 м длинными саморезами. На торцах опор закрепляется крышка с помощью того же крепежа.

Обратите внимание! Для монтажа крышки не стоит применять гвозди. В процессе их забивания может сдвинуться каркасная часть изделия.


Технология изготовления универсального деревянного верстака своими руками

Несмотря на то, что технология создания данной конструкции во многом похожа на предыдущий вариант, для изготовления составного столярного верстака чертежи с размерами потребуются в обязательном порядке. Но в данном случае используются болты вместо саморезов.

Помимо этого, в складном универсальном верстаке своими руками можно установить выдвижные ящики для хранения инструментов.

Технология изготовления складного верстака своими руками:

  1. Вертикальные опоры устанавливаются аналогичным способом и соединяются между собой с помощью горизонтально расположенных перемычек. Перед тем как монтировать перемычки, на них следует выполнить пазы, предназначенные для гаек и шайб. Для этого лучше воспользоваться молотком и стамеской.
  2. Когда перемычки выставлены на необходимом уровне, выполняются сквозные отверстия в горизонтальном бруске и вертикально установленной опоре. Сюда будет вставлен длинный болт. С той стороны, где имеется паз для крепежа, одевается гайка и шайба, после чего элемент хорошо стягивается.
  3. Горизонтальных перемычек для каркасной части самодельного столярного верстака понадобится по 2 шт. на каждую из 4 сторон. Еще потребуется пара перемычек для установки под рабочей поверхностью (в центре). Элементы под столешницей предназначены для выдвижных ящиков. Расстояние между этими перемычками должно соответствовать размерам ящиков.
  4. Болты используются и для фиксации рабочей поверхности. На торцах опор подготавливаются монтажные углубления, а на столешнице – отверстия для крепежа. Болты устанавливаются так, чтобы их головки были утоплены (на 1-2 мм).


Обратите внимание! Чертежи верстака складного не так сложны, как может показаться. Преимущество конструкции заключается в том, что любая поврежденная деталь может быть легко заменена новой.

Конструкция столярных тисков для верстака своими руками

Обычно верстаки комплектуются тисками. Как сделать своими руками подобное приспособление знают многие владельцы гаражных мастерских. Для самодельной конструкции понадобятся специальные шпильки. Такой крепеж продается в хозяйственных магазинах.

Для работы потребуется специальный винтовой штырь. Данная деталь, имеющая резьбу, является основным действующим компонентом конструкции. Минимальный диаметр штыря – 2 см, длина нарезки – 15 см. Чем длиннее будет эта деталь, тем шире можно развести тиски. Если в чертежах тисков своими руками учесть именно эти размерные параметры, можно получить конструкцию, которая разводится почти на 8 см.

Губки инструмента делаются из пары досок. Одна часть детали будет фиксированной. Для ее изготовления нужно взять сосну. Вторая часть размером 2х1,8х50 см будет двигаться. В каждой из этих досок нужно выполнить отверстие под винт. С помощью сверла диаметром 1 см формируются во всех досках одновременно отверстия для шпилек. Чтобы отверстия не смещались по отношению друг к другу, можно соединить их с помощью гвоздей.

После того как все отверстия выполнены, в них вставляется винт и все шпильки вместе с шайбой и гайкой.

Полезный совет! Чтобы иметь возможность обрабатывать заготовки разного размера, нужно сделать шпильки переставляемыми. Потребуется сделать в каждой из досок пару дополнительных отверстий, расположенных недалеко от винтового зажима.

Дополнительно можно использовать для создания тисков своими руками видео - материал, размещенный ниже.

Изготовление слесарного верстака своими руками: как сделать конструкцию из металла

Для слесарных работ лучше изготовить металлический верстак своими руками, ведь деревянный для этого не подойдет. Дело в том, что древесина не так прочна. К тому же при работе с металлическими заготовками столешница из этого материала будет постоянно повреждаться и быстро придет в непригодность.

На общем чертеже слесарного верстака своими руками можно выделить пять основных компонентов конструкции:

  1. Для продольной жесткости изделия используются горизонтальные балки (3 шт.) размером 6х4см. Длина – немного превышает 2 м.
  2. Стоечные малоразмерные балки (9 шт.) из профилированных труб размером 6х4 см. Они используются для сборки каркасной части тумб. В угловой зоне имеются наварные распорки, изготовленные из стальных полосок. За счет всех этих элементов рама получается жесткой и очень прочной.
  3. Стоечные балки (4 шт.) длиной 9-10 см (сечение 6х4 см). Для этого лучше использовать металлические профильные трубы с толстыми стенками (более 2 мм).
  4. Уголок № 50 (4 шт.), который будет использоваться в качестве вертикальных стоек. Высота этих элементов -1,7-2 м. Здесь будет крепиться рабочий инструментарий.

Размеры слесарного верстака:

Полезный совет! Для того чтобы сделать качественные швы, рекомендуется использовать углекислотный полуавтомат. Опытные мастера могут воспользоваться сварочным аппаратом импульсного типа. При отсутствии навыков в обращении с этим инструментом лучше доверить работу профессионалам.

Технология изготовления верстака своими руками: как сделать сборку

Изготовление универсального верстака своими руками начинается со сборки рамы. Для этого нужно взять пару коротких и пару длинных балок. В процессе сваривания эти элементы могут подвергнуться скручиванию.

Чтобы этого не допустить, необходимо:

  1. Выложить детали на идеально ровной плоскости.
  2. В местах размещения стыковочных узлов (их 4 шт.) балки прихватываются с помощью точечного метода сварки.
  3. После этого полноценно выполняются все сварочные швы. Сначала на одной стороне рамы, затем – на ее обратной стороне.


Затем крепятся задние вертикально расположенные стойки и задняя балка (длинная, одна из трех). Обязательно нужно проверить насколько ровно по отношению друг к другу они размещены. Если имеются какие-то отклонения, балки можно осторожно подогнуть с помощью молотка. В конце выполняется сборка остальных стоечных элементов с вертикальным характером расположения, а также элементов, обеспечивающих жесткость.

Когда рама готова, к ней можно приварить уголки, предназначенные для усиления конструкции. Столешница формируется из деревянных досок. Предварительно их нужно пропитать огнестойкой жидкостью. Затем сверху укладывается лист металла.

На вертикальных стоечных элементах можно закрепить щит из фанеры для инструментов. Этот же материал используется для того, чтобы зашить тумбы. Для ящиков можно использовать металлические коробки или изготовить деревянные конструкции.

Можно использовать для того, чтобы более подробно разобраться в технологии изготовления верстака своими руками, видео, которое размещено ниже:

Особенности создания токарного станка по дереву для домашней мастерской

В технологии изготовления токарного станка по дереву своими руками особое место занимает станина. От этой детали напрямую зависит работа прочих деталей, а также устойчивость всей конструкции. Она может быть металлической или деревянной.

Полезный совет! Для изготовления по стандартным чертежам токарного станка по дереву своими руками лучше использовать электрический мотор, который способен развивать скорость в 1500 об./мин. Оптимальный показатель мощности – 200-250 Вт. Если предполагается обработка крупных заготовок, можно увеличить показатели мощности.

Для создания токарно - копировального станка по дереву своими руками можно использовать старый , который уже не нужен. Этот инструмент помещается на фанерной площадке толщиной 1,2 см и размером 20х50 см. Предварительно в ней нужно выполнить отверстия, предназначенные для и крепежных элементов. Сюда же будут монтироваться упоры из брусков. Они необходимы для того, чтобы фреза находилась в фиксированном состоянии. Сам фрезер крепится двумя гвоздями между фиксаторов.

На самом деле совершенно несложно изготовить копирующую конструкцию самодельного токарного станка по дереву своими руками – видео - материалов в сети достаточно.


Пример самодельного токарного станка по дереву своими руками

Для основания лучше взять стальной профиль с толстыми стенками. Чтобы конструкция получилась надежной, рекомендуется использовать две опоры. Поверх них будет установлена станина. Для скрепления деталей применяется пазовый тип соединения. Предварительно нужно изготовить опорные платформы, предназначенные для бабок (задней и передней).

Перечень деталей для токарного станка по дереву (как самому сделать сборку конструкции на основе этого списка понять несложно):

  1. Силовой компонент – можно использовать электрический двигатель от старого насоса или стиральной машины.
  2. Бабка (задняя) – подойдет головка от дрели с высоким запасом мощности.
  3. Бабка (передняя) – для организации этой детали лучше купить заводской шпиндель, оснащенный 3-4 штифтами. Благодаря этому появляется возможность смещать заготовку по отношению к вращательной оси.
  4. Опорный элемент – стол для резцов может быть совершенно любой конфигурации, главное, чтобы он обеспечивал комфорт во время работы.
  5. Шкив – представляет собой соединяющий элемент между передней бабкой и валами в электромоторе.

Обратите внимание! Чтобы работать с этой конструкцией, необходимо будет приобрести набор заводских резцов. При наличии подходящего инструмента их можно изготовить собственноручно, однако потребуется инструментальная сталь.

В качестве вспомогательной информации можно использовать для сборки токарного станка по дереву своими руками видео, подробно отражающее этот процесс.

Второй пример деревообрабатывающего токарного станка своими руками

Альтернативным решением будет изготовление конструкции простейшего токарного мини - станка по дереву своими руками на основе электрической дрели. Этот пример технологии можно использоваться в качестве пробы перед тем, как соорудить более серьезный инструмент.

Этот тип станка подойдет для обработки деревянных заготовок небольшого размера. Материалом для станины могут послужить брусья из древесины. Обратную бабку можно заменить сочетанием вала, установленного на опорный подшипник. Чтобы зафиксировать заготовку нужно будет достать соответствующую .

Данная конструкция имеет свои недостатки, они связаны с:

  • высокой вероятностью того, что возникнут погрешности во фрезеровке;
  • низким уровнем надежности;
  • отсутствием возможности выполнять обработку деревянных заготовок большого размера.


Но не стоит отказываться от этого варианта, ведь он положен в основу технологий создания более совершенных и сложных токарных инструментов. Чтобы правильно рассчитать конструкцию, определите для себя необходимые эксплуатационные свойства и технические характеристики.

Принцип изготовления резцов для токарного станка по дереву

Технология в данном случае осложнена лишь правильным выбором заготовок, которые не только должны иметь соответствующий запросам уровень твердости режущей кромки, но и правильно устанавливаться в фиксатор – державку.

Обратите внимание! При отсутствии инструментальной стали можно обойтись подручными средствами. После того как завершается этап предварительной подготовки, материал дополнительно закаляется.

  1. Прутки стали арматурной – лучше использовать варианты, имеющие заводские исходные размеры и квадратную форму сечения.
  2. Напильники или рашпили – подойдут изношенные заготовки, однако не допускается брать в работу материал с глубокими сколами или трещинами.
  3. Рессоры автомобильные – перед применением этих заготовок им нужно будет придать квадратную форму, что сможет сделать далеко не каждый. Для этой цели пригодится сварочный аппарат. Подойдет и автоген.


Токарные : А - с полукруглым лезвием для чернового точения; Б - с прямым лезвием для чистового точения; В - фасонные; Г - станочный проходной

На станке можно предусмотреть возможность смены резцов. Для этого изготавливается особая модификация корпуса с необходимыми монтажными деталями. Эти элементы должны быть достаточно прочными, чтобы выдерживать нагрузки в процессе работы и при этом сохранять исходное расположение кромочной части.

Когда резец изготовлен, выполняется его заточка, а режущая кромка закаливается. После того как режущая часть накалилась, резец нужно окунуть в машинное масло. С помощью технологии медленной закалки поверхность изделия можно сделать максимально твердой. В этом случае накаленная заготовка должна остывать в естественном режиме.

Приспособления для заточки ножей своими руками: чертежи и рекомендации

Для изготовления точила из двигателя от стиральной машины своими руками можно ограничиться мотором от старой советской конструкции, например, СМР-1,5 или Рига-17. Мощности в 200 Вт будет достаточно, хотя можно увеличить этот показатель и до 400 Вт, выбрав другой вариант движка.

Перечень деталей, необходимых для заточного станка своими руками, включает:

  • трубку (чтобы выточить фланец);
  • гайку для фиксации камня на шкиве;
  • металл для изготовления защитного кожуха для точила своими руками (толщина 2,-2,5 мм);
  • камень точильный;
  • электрический кабельный шнур, имеющий вилку;
  • устройство для старта;
  • уголок из металла или же брусок из дерева (для станины).

Диаметр фланца должен соответствовать размерам втулки на моторе. Кроме этого, на данную деталь будет надеваться точильный камень. С одной стороны на этом элементе выполняется резьба. Отступ должен равняться толщине круга, умноженной на 2. Резьба наносится метчиком. С другой стороны фланец необходимо запрессовать на вал мотора с помощью нагревания. Фиксация осуществляется болтовым или сварочным соединением.

Полезный совет! Резьба должна идти в противоположную сторону относительно того направления, куда выполняются вращательные движения двигателя. Иначе гайка, фиксирующая круг, будет раскручиваться.

Рабочая обмотка мотора присоединяется к кабелю. Она имеет сопротивление 12 Ом, вычислить которое можно с помощью мультиметра. Пусковая обмотка для точила для ножей своими руками будет иметь 30 Ом. Затем изготавливается станина. Рекомендуется брать для нее металлический уголок.

Некоторые люди нуждаются в . Своими руками сделать такую конструкцию можно из станины с 3 опорами, двух шпинделей, шагового двигателя (2 кВт) и труб, используемых в качестве держателей.

Инструкция по созданию стационарной циркулярной пилы своими руками

Создание стола для ручной циркулярной пилы своими руками является важнейшим этапом создания станка, поскольку на этой конструкции будут размещаться основные детали оборудования в виде:

  • силового агрегата;
  • контрольного блока;
  • режущего компонента;
  • других составляющих.

Опорная станина на столе для ручного инструмента выполняет функцию направляющей для циркулярной пилы своими руками. Она контролирует направление, в котором осуществляется распил, и фиксирует заготовку.


Пилорама – модификация циркулярной пилы. Отличие заключается лишь в том, что диск размещен снизу. На конструкцию стола для циркулярной пилы своими руками возложена функция станины. Здесь же установлен силовой агрегат, блок, фиксирующий диск и система контроля.

На этапе проектирования для циркулярной пилы своими руками чертежей следует брать во внимание некоторые факторы:

  1. Глубину, на которую будет осуществляться пропил материала, – показатель зависит от геометрии диска.
  2. Уровень мощности электрического мотора – достаточно будет удельного показателя в 800 Вт.
  3. Зона монтажа системы контроля – управление должно располагаться как можно дальше от диска.
  4. Вращательная скорость – минимально допустимый показатель составляет 1600 об./мин., иначе в процессе резки будет происходить изменение цвета.

Полезный совет! Если стол изготавливается под ручной вариант инструмента, столешницу рекомендуется сделать металлической. Лист металла стоит оснастить в основании ребрами жесткости.


Как изготовить циркулярную пилу из болгарки своими руками

Сначала изготавливается столешница из листового материала. На него наносится разметка в соответствии с размерами инструментария. По этой разметке выполняются вырезы для установки пилы.

  1. Установка параллельного упора для циркулярной пилы своими руками, изготовленного из деревянной рейки. Элемент закрепляется на столешнице.
  2. Паз для упора – данные элементы формируются на столешнице методом фрезеровки.
  3. Монтаж линейки для измерений – зона установки размещается у передней кромки режущего элемента. Линейка будет использоваться для контроля размерных параметров заготовок.
  4. Установка струбцин – дополнительный компонент для фиксации заготовки.

Для станка из циркулярной пилы своими руками потребуются ножки. Они монтируются с учетом габаритов столешницы из деревянных брусьев с сечением 4х4 см. Допускается использование . Чтобы обеспечить дополнительную устойчивость, между опорами следует установить ребра жесткости. Рядом с рабочим местом помещается контрольный блок. Не стоит отказываться от установки УЗО и приспособлений, предохраняющих двигатель от перегрузок.


Технология создания отрезного станка по дереву

Технология изготовления самодельного отрезного станка:

  1. Нарезка деталей из уголка для сборки рамы (общий размер – 120х40х60 см).
  2. Сборка рамы методом сварки.
  3. Фиксация швеллера (направляющая) с помощью сварки.
  4. Монтаж вертикальных стоек (2 шт.) на швеллер (болтовое соединение).
  5. Сборка рамы из труб для установки электрического движка и вала под необходимым наклоном (45х60 см).
  6. Установка плиты с двигателем в задней части рамы.
  7. Изготовление вала, укомплектованного фланцами, опорами и шкивом (высота выступания фланца – 3,2 см).
  8. Монтаж опор, подшипников и шкивов на вал. Фиксация подшипников осуществляется на верхнюю раму в углублениях, выполненных в плите.
  9. Монтаж коробки с электрической схемой на нижний участок рамы.
  10. Установка вала в зоне между стойками. Диаметр – 1,2 см. Поверх вала должна быть надета втулка с минимально возможным зазором, так, чтобы эти элементы скользили.
  11. Приваривание коромысла, изготовленного из швеллера (80 см), на втулку. Размер плеч коромысла должен находиться в рамках следующего соотношения: 1:3. С наружной стороны необходимо закрепить пружины.


Полезный совет! Специалисты советуют применять асинхронный двигатель. Такой мотор не особенно требователен. Для сетей с 3-мя фазами необходим двигатель с мощностью 1,5-3 кВт, для однофазных сетей этот показатель нужно увеличить на треть. Потребуется подключение посредством конденсатора.

Останется выполнить монтаж мотора на короткое плечо коромысла. На длинное плечо помещается режущий элемент. Вал и двигатель соединяются с помощью ременной передачи. Для столешницы можно использовать лист металла, строганную доску.

Сборка сверлильного станка своими руками: видео как сделать конструкцию, рекомендации

Хороший чертеж сверлильного станка из дрели своими руками – основное условие, чтобы обзавестись необходимым инструментом. Для создания такого станка не нужно применять особенные материалы и покупать дополнительные комплектующие.

Составляющие для конструкции самодельного сверлильного станка своими руками:

  • станина (основание);
  • вращательный механизм (дрель);
  • приспособление, обеспечивающее подачу;
  • вертикально расположенная стойка для фиксации дрели.


В освоении технологии изготовления сверлильного станка из дрели своими руками видео - материал может оказать неоценимую помощь.

Руководство по созданию сверлильного станка своими руками (как сделать простейшую конструкцию):

  1. Для стойки лучше использовать ДПС, чтобы деталь получилась массивной или мебельную плиту толщиной более 20 мм. Это позволит свести на нет вибрационное воздействие инструмента. Допускается использование основания от старого микроскопа или фотоувеличителя.
  2. Точность сверлильного станка из дрели своими руками зависит от направляющих (2 шт.). Они служат основой для перемещения колодки, на которой располагается дрель. Для изготовления направляющих лучше всего взять стальные полосы. Впоследствии они будут надежно прикручены шурупами к стойке.
  3. Для колодки нужно взять хомуты из стали, благодаря которым на данной детали будет надежно закреплен вращательный механизм.

Для изготовленного своими руками сверлильного мини - станка необходим механизм подачи вращательного инструмента. Классическая схема конструкции предполагает использование пружины и рычага. Пружина закрепляется между колодкой и стойкой.

Существует множество приспособлений для своими руками, видео - материал поможет разобраться в этой теме.

Особенности фрезерных станков с ЧПУ своими руками

Программное обеспечение считается важной составляющей во фрезерном станке с ЧПУ по дереву своими руками. Чертежи обычной конструкции с учетом этого условия должны включать дополнительные элементы под него:

  • порт LPT;
  • блок ЧПУ.

Полезный совет! Для изготовления своими руками копировально - фрезерного станка по дереву или по металлу можно использовать каретки, принадлежащие старому принтеру. На основе этих деталей можно создать механизм, позволяющий фрезе перемещаться в двух плоскостях.

Сборка фрезерного станка по дереву для домашней мастерской

На первом этапе составляются для фрезерного станка по дереву своими руками чертежи, которые включают информацию о размещении всех компонентов конструкции, их размеры, а также способы фиксации.


Далее собирается опорная рама из труб, заранее нарезанных на детали необходимого размера. Для скрепления нужно использовать сварочный аппарат. Затем выполняется контроль размерных параметров, чтобы приступить к изготовлению рабочей поверхности.

Действовать нужно в рамках следующей схемы:

  1. На плиту наносится разметка и вырезается из нее столешница.
  2. Если фреза будет размещаться вертикально, в плите нужно сделать вырез для нее.
  3. Выполняется монтаж шпинделя и электрического двигателя. При этом шпиндель не должен выходить за плоскость рабочей поверхности.
  4. Устанавливается ограничительная планка.

Обязательно перед работой стоит провести испытания станка. Включенный фрезер не должен слишком сильно вибрировать. Чтобы скомпенсировать этот недостаток рекомендуется дополнительно устанавливать ребра жесткости.


Сборка фрезерного станка по металлу своими руками

Пошаговая инструкция по изготовлению самодельного фрезерного станка по металлу:

  1. Колонна и станина изготавливаются из металлического швеллера. В результате должна получиться конструкция П-образной формы, где в качестве нижней поперечины выступает основание инструмента.
  2. Из уголка выполняются направляющие. Материал необходимо отшлифовать и соединить с колонной болтами.
  3. Из профильной трубы с квадратным сечением изготавливаются направляющие для консоли. Сюда нужно вставить штыри, имеющие навинченную резьбу. Перемещение консоли будет осуществляться за счет автомобильного домкрата ромбовидного типа на высоту в 10 см. При этом возможности амплитуды в сторону составляют 13 см, а столешница может перемещаться в рамках 9 см.
  4. Рабочая поверхность вырезается из фанерного листа и крепится винтовым способом. Головки крепежа нужно утопить.
  5. На рабочую поверхность выполняется монтаж тисков, изготовленных из трубы с квадратным типом сечения и металлического уголка, сваренных между собой. В качестве фиксирующего заготовки элемента лучше использовать штырь, покрытый резьбой.

Обратите внимание! Закреплять вращательный элемент в станине лучше так, чтобы шпиндель был направлен вниз. Для фиксации необходимо заранее приварить перемычки, потребуются винты и гайки.


После этого нужно прикрепить к шпинделю конус (Морзе 2) и выполнить на него установку цангового или сверлильного патрона.

Особенности изготовления рейсмусового станка своими руками

Чертежи рейсмуса своими руками со сложной конструкцией предполагают использование дорогостоящих компонентов:

  • подшипников, обладающих повышенной износостойкостью;
  • стальных прокатных листов;
  • зубчаток;
  • шкивов;
  • мощного электрического движка.

В результате затраты на изготовление самодельного рейсмуса существенно возрастают. По этой причине многие стараются ограничиться простейшей конструкцией.

Инструкция для самодельного рейсмусового станка по дереву:

Элемент конструкции Данные
Станина Рамы (2 шт.), изготовленные с применением сварки на основе уголка (4-5 см). Соединение рам осуществляется за счет шпилек (сточенные 6-гранники – 3,2 см).
Протяжка Резиновые валики выжимного типа от стиральной машинки. Выточены под размер подшипников и надеты на ось диаметром 2 см. Действует за счет вращательных ручных движений.
Стол Отшлифованная доска крепится к станине с помощью болтового соединения, головки должны быть потайными. Доски нужно обработать маслом (уже отработанным).
Двигатель на 3 фазы, мощность – 5,5 кВт, вращательная скорость – 5000 об./мин.
Защитный кожух Изготовлен из жести (6 мм), надетой поверх каркасного уголка (20 мм).

Сборка рейсмуса из электрорубанка своими руками

Для создания самодельного рейсмусового станка нужно поместить рубанок на брусок, зафиксировать его с помощью такого приспособления, как струбцины, не забыв при этом оставить зазор.

Обратите внимание! Размер зазора выставляется с учетом толщины заготовки, которая будет обрабатываться на станке.

Схема изготовления рейсмуса из рубанка своими руками очень проста:

  • опорный брус закрепляется на удобной поверхности;
  • необходимая величина зазора подбирается за счет добавления прослоек фанеры;
  • на полученное основание крепится струбцинами конструкция рейсмуса из электрорубанка.

Две струбцины удерживают основание на столе, другие две – рубанок. Убедившись в надежности этого крепления, можно приступать к использованию инструмента.


Схема создания шлифовального станка по дереву своими руками

  1. Оптимальная ширина шлифовальной ленты 20 см.
  2. Наждачное полотно ленты разрезается на полоски.
  3. Наклейка абразивной ленты выполняется встык.
  4. Чтобы укрепить шов, нужно подложить под низ плотный материал.
  5. Не рекомендуется использовать низкокачественный клей, так как он спровоцирует разрыв материала по шву.
  6. Диаметр вала для ленты в центре должен быть на 2-3 мм шире, чем по краям.
  7. Чтобы лента не скользила, рекомендуется выполнить намотку из тонкой резины (велосипедное колесо).

Калибровально - шлифовальные станки по дереву относятся к группе барабанных конструкций. Эта категория обширна и включает множество разновидностей оборудования.

Для изготовления барабанного шлифовального станка по дереву своими руками можно выбрать следующие конструкции:

  • плоскошлифовальная – заготовка обрабатывается в рамках одной плоскости;
  • планетарная – с ее помощью на заготовке формируется ровная плоскость;
  • круглошлифовальная – с ее помощью обрабатываются заготовки цилиндрической формы.

Из видео, размещенного ниже, можно узнать как сделать своими руками станок шлифовального типа.

Правила эксплуатации фуговального станка по дереву своими руками

В конструкциях изготовленного своими руками фуговального станка очень важно правильно выставить настройку оборудования, чтобы погрешности не превышали дозволенные показатели:

  • перпендикуляр – максимально 0,1 мм/см;
  • плоскость – 0,15мм/м.

С технологией изготовления фуганка своими руками можно ознакомиться при помощи видео.

Если в процессе эксплуатации на обрабатываемой поверхности появляется эффект мшистости или подпалины, значит затупились режущие элементы. Чтобы обработка деталей с габаритами менее 3х40 см была более комфортной, удерживать их нужно с помощью толкателей.

Кривая поверхность заготовки после выполненной обработки свидетельствует о том, что нарушено правильное размещение ножей и рабочей поверхности. Эти элементы нужно выставить заново.

Все эти станки могут быть полезны для проведения ремонта в доме или элементарной починки вещей. Поэтому их присутствие в домашней мастерской будет нелишним. Независимо от того, каким будет оснащение гаража, все станки требуют аккуратного и внимательного отношения. Во время работы никогда нельзя забывать о безопасности.

Станки, оснащенные числовым программным обеспечением (ЧПУ) представлены в виде современного оборудования для резки, точения, сверления или шлифования металла, фанеры, дерева пенопласта и других материалов.

Встроенная электроника на базе печатных плат «Arduino» обеспечивает максимальную автоматизацию работ.

1 Что собой представляет станок с ЧПУ?

Станки ЧПУ на базе печатных плат «Ардуино» способны в автоматическом режиме бесступенчато менять частоту вращения шпинделей, а также скорость подачи суппортов, столов и прочих механизмов. Вспомогательные элементы станка ЧПУ автоматически принимает нужное положение, и могут использоваться для резки фанеры или алюминиевого профиля.

В устройствах на основе печатных плат «Arduino» режущий инструмент (предварительно настроенный) также сменяется в автоматическом режиме.

В устройствах ЧПУ на базе печатных плат «Ардуино» все команды подаются через контроллер.

Контроллер получает сигналы от программоносителя. Для такого оборудования для резки фанеры, металлического профили или пенопласта программоносителями являются кулачки, упоры или копиры.

Поступивший из программоносителя сигнал через контроллер подает команду на автомат, полуавтомат или копировальный станок. Если необходимо сменить лист фанеры или пенопласта для резки, то кулачки или копиры заменяются другими элементами.

Агрегаты с программным управлением на базе плат" Ардуино" в качестве программоносителя используют перфоленты, перфокарты или магнитные ленты в которых содержится вся необходимая информация. С применением плат «Arduino» весь процесс резки фанеры, пенопласта или другого материала полностью автоматизируется, сто минимизирует затраты труда.

Стоит отметить, что собрать станок ЧПУ для резки фанеры или пенопласта на базе плат Arduino своими руками можно без особых сложностей. Управление в агрегатах ЧПУ на основе «Ардуино» осуществляет контроллер, который передает как технологическую, так и размерную информацию.

Применяя плазморезы с ЧПУ на базе плат «Ардуино» можно освободить большое число универсального оборудования и наряду с этим увеличить производительность труда. Основные преимущества станков на базе «Ардуино», собранных своими руками, выражаются в:

  • высокой (по сравнению с ручными станками) производительностью;
  • гибкости универсального оборудования в сочетании с точностью;
  • снижении потребности в привлечении квалифицированных специалистов к работе;
  • возможности изготовления взаимозаменяемых деталей по одной программе;
  • сокращенных сроках подготовки при изготовлении новых деталей;
  • возможности сделать станок своими руками.

1.1 Процесс работы фрезерного станка с ЧПУ (видео)


1.2 Разновидности ЧПУ станков

Представленные агрегаты для резки фанеры или пенопласта, использующие для работы платы «Arduino», делятся на классы по:

  • технологическим возможностям;
  • принципу смены инструмента;
  • способу смены заготовки.

Любой класс такого оборудования можно сделать своими руками, а электроника «Arduino» обеспечит максимальную автоматизацию рабочего процесса. Наряду с классами, станки могут быть:

  • токарными;
  • сверлильно-расточными;
  • фрезерными;
  • шлифовальными;
  • станки электрофизического ряда;
  • многоцелевые.

Токарные агрегаты на базе «Arduino» могут подвергать обработке наружные и внутренние поверхности всевозможных деталей.

Вращение заготовок может проводиться как в прямолинейных, так и в криволинейных контурах. Устройство также предназначается для резки наружной и внутренней резьбы. Фрезерные агрегаты на базе «Arduino» предназначаются для фрезерования простых и сложных деталей корпусного типа.

Кроме того они могут производить сверление и расточку. Шлифовальные станки, которые также можно сделать своими руками могут применяться для финишной обработки деталей.

В зависимости от вида обрабатываемых поверхностей агрегаты могут быть:

  • плоскошлифовальными;
  • внутришлифовальными;
  • шлицешлифовальными.

Многоцелевые агрегаты могут применяться для резки фанеры или пенопласта, выполнять сверление, фрезерование, расточку и токарную обработку деталей. Перед тем, как сделать станок с ЧПУ своими руками, важно учитывать, что деление оборудования производится и по способу смены инструмента. Замена может производиться:

  • вручную;
  • автоматически в револьверной головке;
  • автоматически в магазине.

Если электроника (контроллер) может обеспечивать автоматическую смену заготовок с использованием специальных накопителей, то аппарат может длительное время работать без участия оператора.

Для того, чтобы сделать представленный агрегат для резки фанеры или пенопласта своими руками, необходимо подготовить исходное оборудование. Для этого может быть пригоден бывший в употреблении .

В нем рабочий орган заменяется на фрезу. Кроме того сделать механизм своими руками можно из кареток старого принтера.

Это позволит двигаться рабочей фрезе в направлении двух плоскостей. Далее к конструкции подключается электроника, ключевым элементом которой является контроллер и платы «Arduino».

Схема сборки позволяет сделать своими руками самодельный агрегат ЧПУ автоматическим. Такое оборудование может быть предназначено для резки пластика, пенопласта, фанеры или тонкого металла. Для того, чтобы устройство смогло выполнять более сложные виды работ, необходим не только контроллер, но и шаговый двигатель.

Он должен обладать высокими мощностными показателями – не менее 40-50 ватт. Рекомендуется использовать обычный электродвигатель, так как с его применением отпадет необходимость в создании винтовой передачи, а контроллер будет обеспечивать своевременную подачу команд.

Нужное усилие на вал передачи в самодельном устройстве должно передаваться посредством зубчатых ремней. Если для передвижения рабочей фрезы самодельный станок с ЧПУ будет использовать каретки от принтеров, то для этой цели необходимо выбрать детали от принтеров больших размеров.

Основой будущего агрегата может послужить прямоугольная балка, которая должна быть прочно закреплена на направляющих. Каркас должен отличаться высокой степенью жесткости, но использовать сварку не рекомендуется. Лучше применять болтовое соединение.

Сварочные швы будут подвергаться деформации из-за постоянных нагрузок при работе станка. Элементы крепления при этом разрушаются, что приведет к сбою настроек, а контроллер будет работать некорректно.

2.1 О шаговых двигателях суппортах и направляющих

Агрегат с ЧПУ, собранный самостоятельно, должен быть оснащен шаговыми электродвигателями. Как уже упоминалось выше, для сборки агрегата лучше всего использовать двигатели от старых матричных принтеров.

Для эффективного функционирования устройства понадобится три отдельных двигателя шагового типа. Рекомендуется применять двигатели с пятью отдельными проводами управления. Это позволит увеличить функциональность самодельного аппарата в несколько раз.

При подборе двигателей для будущего станка нужно знать число градусов на один шаг, показатель рабочего напряжения и сопротивление обмотки. Впоследствии это поможет произвести корректную настройку всего программного обеспечения.

Крепление вала шарового двигателя производится с применением резинового кабеля, покрытого толстой обмоткой. Кроме того, с помощью такого кабеля можно присоединить двигатель к ходовой шпильке. Станину можно изготовить из пластмассы с толщиной в 10-12 мм.

Наряду с пластиком возможно применение алюминия или органического стекла.

Ведущие детали каркаса крепятся с помощью саморезов, а при использовании древесины можно крепить элементы клеем ПВА. Направляющие представляют собой стальные прутья с сечением в 12 мм и длиной в 20 мм. На каждую ось приходится по 2 прута.

Суппорт изготавливают из текстолита, его размеры должны составлять 30×100х40 см. Направляющие части текстолита скрепляются винтами марки М6, а суппорты «Х» и «У» в верху должны иметь 4 резьбовых отверстия для закрепления станины. Шаговые электродвигатели устанавливаются с помощью крепежей.

Крепления можно сделать с использованием стали листового типа. Толщина листа должна составлять 2-3 мм. Далее винт соединяется с осью шагового двигателя посредством гибкого вала. С этой целью можно задействовать обычный резиновый шланг.

Выбирая электронные комплектующие для своего станка, сделанного своими руками, важно обращать внимание на их качество, так как именно от этого будет зависеть точность технологических операций, которые на нем будут выполняться. После установки и подключения всех электронных компонентов системы ЧПУ нужно выполнить загрузку необходимого программного обеспечения и драйверов. Только после этого следуют пробный запуск станка, проверка правильности его работы под управлением загруженных программ, выявление недостатков и их оперативное устранение.

Все вышеописанные действия и перечисленные комплектующие подходят для изготовления своими руками фрезерного станка не только координатно-расточной группы, но и ряда других типов. На таком оборудовании можно выполнять обработку деталей со сложной конфигурацией, так как рабочий орган станка может перемещаться в трех плоскостях: 3d.

Ваше желание своими руками собрать такой станок, управляемый системой ЧПУ, должно быть подкреплено наличием определенных навыков и подробных чертежей. Очень желательно также посмотреть ряд тематических обучающих видео, некоторые из которых представлены в данной статье.

21 , средняя оценка: 3,52 из 5)

Набор, с помощью которого можно собрать свой фрезерный станок с ЧПУ.
В Китае продаются готовые станки, обзор одного из них на Муське уже публиковался. Мы же с Вами соберем станок сами. Добро пожаловать…
UPD : ссылки на файлы

Я все-таки приведу ссылку на обзор готового станка от AndyBig. Я же не буду повторяться, не буду цитировать его текст, напишем все с нуля. В заголовке указан только набор с двигателями и драйвером, будут еще части, постараюсь дать ссылки на всё.
И это… Заранее извиняюсь перед читателями, фотографии в процессе специально не делал, т.к. в тот момент делать обзор не собирался, но подниму максимум фоток процесса и постараюсь дать подробное описание всех узлов.

Цель обзора - не столько похвастаться, сколько показать возможность сделать для себя помощника самому. Надеюсь этим обзором подать кому-то идею, и возможно не только повторить, но и сделать еще лучше. Поехали…

Как родилась идея:

Так получилось, что с чертежами я связан давно. Т.е. моя профессиональная деятельность с ними тесно связана. Но одно дело, когда ты делаешь чертеж, а после уже совсем другие люди воплощают объект проектирования в жизнь, и совсем другое, когда ты воплощаешь объект проектирования в жизнь сам. И если со строительными вещами у меня вроде как нормально получается, то с моделизмом и другим прикладным искусством не особо.
Так вот давно была мечта из нарисованного в автокаде изображения, сделать вжжик - и оно вот в натуре перед тобой, можно пользоваться. Идея эта время от времени проскакивала, но во что-то конкретное оформиться никак не могла, пока…

Пока я не увидел года три-четыре назад REP-RAP. Ну что ж 3Д принтер это была очень интересная вещь, и идея собрать себе долго оформлялась, я собирал информацию о разных моделях, о плюсах и минусах разных вариантов. В один момент перейдя по одной из ссылок я попал на форум, где сидели люди и обсуждали не 3Д принтеры, а фрезерные станки с ЧПУ управлением. И отсюда, пожалуй, увлечение и начинает свой путь.

Вместо теории

В двух словах о фрезерных станках с ЧПУ (пишу своими словами намеренно, не копируя статьи, учебники и пособия).

Фрезерный станок работает прямо противоположно 3Д принтеру. В принтере шаг за шагом, слой за слоем модель наращивается за счет наплавления полимеров, во фрезерном станке, с помощью фрезы из заготовки убирается «все лишнее» и получается требуемая модель.

Для работы такого станка нужен необходимый минимум.
1. База (корпус) с линейными направляющими и передающий механизм (может быть винт или ремень)
2. Шпиндель (я вижу кто-то улыбнулся, но так он называется) - собственно двигатель с цангой, в которую устанавливается рабочий инструмент - фреза.
3. Шаговые двигатели - двигатели, позволяющие производить контролируемые угловые перемещения.
4. Контроллер - плата управления, передающая напряжения на двигатели в соответствии с сигналами, полученными от управляющей программы.
5. Компьютер, с установленной управляющей программой.
6. Базовые навыки черчения, терпение, желание и хорошее настроение.))

По пунктам:
1. База.
по конфигурации:

Разделю на 2 типа, существуют более экзотические варианты, но основных 2:

С подвижным порталом:
Собственно, выбранная мной конструкция, в ней есть основа на которой закреплены направляющие по оси X. По направляющим оси Х передвигается портал, на котором размещены направляющие оси Y, и перемещающийся по нему узел оси Z.

Со статическим порталом
Такая конструкция представляет и себя корпус он же и является порталом, на котором размещены направляющие оси Y, и перемещающийся по нему узел оси Z, а ось Х уже перемещается относительно портала.

По материалу:
корпус может быть изготовлен из разных материалов, самые распространенные:
- дюраль - обладает хорошим соотношением массы, жесткости, но цена (именно для хоббийной самоделки) все-таки удручает, хотя если на станок имеются виды по серьезному зарабатыванию денег, то без вариантов.
- фанера - неплохая жесткость при достаточной толщине, небольшой вес, возможность обрабатывать чем угодно:), ну и собственно цена, лист фанеры 17 сейчас совсем недорог.
- сталь - часто применяют на станках большой площади обработки. Такой станок конечно должен быть статичным (не мобильным) и тяжелым.
- МФД, оргстекло и монолитный поликарбонат, даже ДСП - тоже видел такие варианты.

Как видите - сама конструкция станка весьма схожа и с 3д принтером и с лазерными граверами.
Я намеренно не пишу про конструкции 4, 5 и 6 -осевых фрезерных станков, т.к. на повестке дня стоит самодельный хоббийный станок.

2. Шпиндель.
Собственно, шпиндели бывают с воздушным и водяным охлаждением.
С воздушным охлаждением в итоге стоят дешевле, т.к. для них не надо городить дополнительный водяной контур, работают чуть громче нежели водяные. Охлаждение обеспечивается установленной на тыльной стороне крыльчаткой, которая на высоких оборотах создает ощутимый поток воздуха, охлаждающий корпус двигателя. Чем мощнее двигатель, тем серьезнее охлаждение и тем больше воздушный поток, который вполне может раздувать во все стороны
пыль (стружку, опилки) обрабатываемого изделия.

С водяным охлаждением. Такой шпиндель работает почти беззвучно, но в итоге все-равно разницу между ними в процессе работу не услышать, поскольку звук обрабатываемого материала фрезой перекроет. Сквозняка от крыльчатки, в данном случае конечно нет, зато есть дополнительный гидравлический контур. В таком контуре должны быть и трубопроводы, и помпа прокачивающая жидкость, а также место охлаждения (радиатор с обдувом). В этот контур обычно заливают не воду, а либо ТОСОЛ, либо Этиленгликоль.

Также шпиндели есть различных мощностей, и если маломощные можно подключить напрямую к плате управления, то двигатели мощностью от 1кВт уже необходимо подключать через блок управления, но это уже не про нас.))

Да, еще частенько в самодельных станках устанавливают прямые шлифмашины, либо фрезеры со съемной базой. Такое решение может быть оправдано, особенно при выполнении работ недолгой продолжительности.

В моем случае был выбран шпиндель с воздушным охлаждением мощностью 300Вт.

3. Шаговые двигатели.
Наибольшее распространение получили двигатели 3 типоразмеров
NEMA17, NEMA23, NEMA 32
отличаются они размерами, мощностью и рабочим моментом
NEMA17 обычно применяются в 3д принтерах, для фрезерного станка они маловаты, т.к. приходится таскать тяжелый портал, к которому дополнительно прикладывается боковая нагрузка при обработке.
NEMA32 для такой поделки излишни, к тому же пришлось бы брать другую плату управления.
мой выбор пал на NEMA23 с максимальной мощностью для этой платы - 3А.

Также люди используют шаговики от принтеров, но т.к. у меня и их не было и все равно приходилось покупать выбрал всё в комплекте.

4. Контроллер
Плата управления, получающая сигналы от компьютера и передающая напряжение на шаговые двигатели, перемещающие оси станка.

5. Компьютер
Нужен комп отдельный (возможно весьма старый) и причин тому, пожалуй, две:
1. Вряд ли Вы решитесь располагать фрезерный станок рядом с тем местом, где привыкли читать интернетики, играть в игрушки, вести бухгалтерию и т.д. Просто потому, что фрезерный станок - это громко и пыльно. Обычно станок либо в мастерской, либо в гараже (лучше отапливаемом). У меня станок стоит в гараже, зимой преимущественно простаивает, т.к. нет отопления.
2. По экономическим соображениям обычно применяются компьютеры уже не актуальные для домашней жизни - сильно б/у:)
Требования к машине по большому счету ни о чем:
- от Pentium 4
- наличие дискретной видеокарты
- RAM от 512MB
- наличие разъема LPT (по поводу USB не скажу, за имением драйвера, работающего по LPT, новинки пока не изучал)
такой компьютер либо достается из кладовки, либо как в моем случае покупается за бесценок.
В силу малой мощности машины стараемся не ставить дополнительный софт, т.е. только ось и управляющая программа.

Дальше два варианта:
- ставим windows XP (комп то слабенький, помним да?) и управляющую программу MATCH3 (есть другие, но это самая популярная)
- ставим никсы и Linux CNC (говорят, что тоже очень неплохо все, но я никсы не осилил)

Добавлю, пожалуй, чтоб не обидеть излишне обеспеченных людей, что вполне можно поставить и не пенёк четвертый, а и какой-нибудь ай7 - пожалуйста, если это Вам нравится и можете себе это позволить.

6. Базовые навыки черчения, терпение, желание и хорошее настроение.
Тут в двух словах.
Для работы станка нужна управляющая программа (по сути текстовый файл содержащий координаты перемещений, скорость перемещений и ускорения), которая в свою очередь готовится в CAM приложении - обычно это ArtCam, в этом приложении готовиться сама модель, задаются ее размеры, выбирается режущий инструмент.
Я обычно поступаю несколько более долгим путем, делаю чертеж, а AutoCad потом, сохранив его *.dxf подгружаю в ArtCam и уже там готовлю УП.

Ну и приступаем к процессу создания своего.

Перед проектированием станка принимаем за отправные точки несколько моментов:
- Валы осей будут сделаны из шпильки строительной с резьбой М10. Конечно, бесспорно существуют более технологичные варианты: вал с трапециевидной резьбой, шарико-винтовая передача(ШВП), но необходимо понимать, что цена вопроса оставляет желать лучшего, а для хоббийного станка цена получается вообще космос. Тем не менее со временем я собираюсь провести апгрейд и заменить шпильку на трапецию.
- Материал корпуса станка – фанера 16мм. Почему фанера? Доступно, дешево, сердито. Вариантов на самом деле много, кто-то делает из дюрали, кто-то из оргстекла. Мне проще из фанеры.

Делаем 3Д модель:


Развертку:


Далее я поступил так, снимка не осталось, но думаю понятно будет. Распечатал развертку на прозрачных листах, вырезал их и наклеил на лист фанеры.
Выпилил части и просверлил отверстия. Из инструментов - электролобзик и шуруповерт.
Есть еще одна маленькая хитрость, которая облегчит жизнь в будущем: все парные детали перед сверлением отверстий сжать струбциной и сверлить насквозь, таким образом Вы получите отверстия, одинаково расположенные на каждой части. Даже если при сверлении получится небольшое отклонение, то внутренние части соединенных деталей будут совпадать, а отверстие можно немного рассверлить.

Параллельно делаем спецификацию и начинаем все заказывать.
что получилось у меня:
1. Набор, указанный в данном обзоре, включает в себя: плата управления шаговыми двигателями (драйвер), шаговые двигатели NEMA23 – 3 шт., блок питания 12V, шнур LPTи кулер.

2. Шпиндель (это самый простой, но тем не менее работу свою выполняет), крепеж и блок питания 12V.

3. Б/у компьютер Pentium 4, самое главное на материнке есть LPT и дискретная видеокарта + ЭЛТ монитор. Взял на Авито за 1000р.
4. Вал стальной: ф20мм – L=500мм – 2шт., ф16мм – L=500мм – 2шт., ф12мм – L=300мм – 2шт.
Брал тут, на тот момент в Питере брать получалось дороже. Пришло в течении 2 недель.

5. Подшипники линейные: ф20 – 4шт., ф16 – 4шт., ф12 – 4 шт.
20

16

12

6. Крепления для валов: ф20 – 4шт., ф16 – 4шт., ф12 - 2шт.
20

16

12

7. Гайки капролоновые с резьбой М10 – 3шт.
Брал вместе с валами на duxe.ru
8. Подшипники вращения, закрытые – 6шт.
Там же, но у китайцев их тоже полно
9. Провод ПВС 4х2,5
это оффлайн
10. Винтики, шпунтики, гаечки, хомутики – кучка.
Это тоже в оффлайне, в метизах.
11. Так же был куплен набор фрез

Итак, заказываем, ждем, выпиливаем и собираем.




Изначально драйвер и блок питания для него установил в корпус с компом вместе.


Позже было принято решение разместить драйвер в отдельном корпусе, он как раз появился.


Ну и старенький монитор как-то сам поменялся на более современный.

Как я говорил вначале, никак не думал, что буду писать обзор, поэтому прилагаю фотографии узлов, и постараюсь дать пояснения по процессу сборки.

Сначала собираем три оси без винтов, для того чтобы максимально точно выставить валы.
Берем переднюю и заднюю стенки корпуса, крепим фланцы для валов. Нанизываем на оси Х по 2 линейных подшипника и вставляем их во фланцы.


Крепим дно портала к линейным подшипникам, пытаемся покатать основание портала туда-сюда. Убеждаемся в кривизне своих рук, все разбираем и немного рассверливаем отверстия.
Таким образом мы получаем некоторую свободу перемещения валов. Теперь наживляем фланцы, вставляем валы в них и перемещаем основание портала вперед-назад добиваемся плавного скольжения. Затягиваем фланцы.
На этом этапе необходимо проверить горизонтальность валов, а также их соосность по оси Z (короче, чтобы расстояние от сборочного стола до валов была одинаковой) чтобы потом не завалить будущую рабочую плоскость.
С осью Х разобрались.
Крепим стойки портала к основанию, я для этого использовал мебельные бочонки.


Крепим фланцы для оси Y к стойкам, на этот раз снаружи:


Вставляем валы с линейными подшипниками.
Крепим заднюю стенку оси Z.
Повторяем процесс настройки параллельности валов и закрепляем фланцы.
Повторяем аналогично процесс с осью Z.
Получаем достаточно забавную конструкцию, которую можно перемещать одной рукой по трем координатам.
Важный момент: все оси должны двигаться легко, т.е. немного наклонив конструкцию портал должен сам свободно, без всяких скрипов и сопротивления переместиться.

Далее крепим ходовые винты.
Отрезаем строительную шпильку М10 необходимой длины, накручиваем капролоновую гайку примерно на середину, и по 2 гайки М10 с каждой стороны. Удобно для этого, немного накрутив гайки, зажать шпильку в шуруповерт и удерживая гайки накрутить.
Вставляем в гнезда подшипники и просовываем в них изнутри шпильки. После этого фиксируем шпильки к подшипнику гайками с каждой стороны и контрим вторыми чтобы не разболталось.
Крепим капролоновую гайку к основанию оси.
Зажимаем конец шпильки в шуруповерт и пробуем переместить ось от начала до конца и вернуть.
Здесь нас поджидает еще пара радостей:
1. Расстояние от оси гайки до основания в центре (а скорее всего в момент сборки основание будет посередине) может не совпасть с расстоянием в крайних положениях, т.к. валы под весом конструкции могут прогибаться. Мне пришлось по оси Х подкладывать картонку.
2. Ход вала может быть очень тугим. Если Вы исключили все перекосы, то может сыграть роль натяжение, тут необходимо поймать момент натяга фиксации гайками к установленному подшипнику.
Разобравшись с проблемами и получив свободное вращение от начала до конца переходим к установке остальных винтов.

Присоединяем к винтам шаговые двигатели:
Вообще при применении специальных винтов, будь то трапеция или ШВП на них делается обработка концов и тогда подключение к двигателю очень удобно делается специальной муфтой.

Но мы имеем строительную шпильку и пришлось подумать, как крепить. В этот момент мне попался в руки отрез газовой трубы, ее и применил. На шпильку она прямо «накручивается» на двигатель заходит в притирку, затянул хомутами - держит весьма неплохо.


Для закрепления двигателей взял алюминиевую трубку, нарезал. Регулировал шайбами.
Для подключения двигателей взял вот такие коннекторы:




Извините, не помню как называются, надеюсь кто-нибудь в комментариях подскажет.
Разъем GX16-4 (спасибо Jager). Просил коллегу купить в магазине электроники, он просто рядом живет, а мне получалось очень неудобно добираться. Очень ими доволен: надежно держат, рассчитаны на бОльший ток, всегда можно отсоединить.
Ставим рабочее поле, он же жертвенный стол.
Присоединяем все двигатели к управляющей плате из обзора, подключаем ее к 12В БП, коннектим к компьютеру кабелем LPT.

Устанавливаем на ПК MACH3, производим настройки и пробуем!
Про настройку отдельно, пожалуй, писать не буду. Это можно еще пару страниц накатать.

У меня целая радость, сохранился ролик первого запуска станка:


Да, когда в этом видео производилось перемещение по оси Х был жуткий дребезг, я к сожалению, не помню уже точно, но в итоге нашел то ли шайбу болтающуюся, то ли еще что-то, в общем это было решено без проблем.

Далее необходимо поставить шпиндель, при этом обеспечив его перпендикулярность (одновременно по Х и по Y) рабочей плоскости. Суть процедуры такая, к шпинделю изолентой крепим карандаш, таким образом получается отступ от оси. При плавном опускании карандаша он начинает рисовать окружность на доске. Если шпиндель завален, то получается не круг, а дуга. Соответственно необходимо выравниванием добиться рисования круга. Сохранилась фотка от процесса, карандаш не в фокусе, да и ракурс не тот, но думаю суть понятна:

Находим готовую модель (в моем случае герб РФ) подготавливаем УП, скармливаем ее MACHу и вперед!
Работа станка:


фото в процессе:


Ну и естественно проходим посвящение))
Ситуация как забавная, так и в целом понятная. Мы мечтаем построить станок и сразу выпилить что-то суперкрутое, а в итоге понимаем, что на это время уйдет просто уйма времени.

В двух словах:
При 2Д обработке (просто выпиливании) задается контур, который за несколько проходов вырезается.
При 3Д обработке (тут можно погрузиться в холивар, некоторые утверждают, что это не 3Д а 2.5Д, т.к. заготовка обрабатывается только сверху) задается сложная поверхность. И чем выше точность необходимого результата, тем тоньше применяется фреза, тем больше проходов этой фрезы необходимо.
Для ускорения процесса применяют черновую обработку. Т.е. сначала производится выборка основного объема крупной фрезой, потом запускается чистовая обработка тонкой фрезой.

Далее, пробуем, настраиваем экспериментируем т.д. Правило 10000 часов работает и здесь;)
Пожалуй, я не буду больше утомлять рассказом о постройке, настройке и др. Пора показать результаты использования станка - изделия.









Как видите в основном это выпиленные контуры или 2Д обработка. На обработку объемных фигур уходит много времени, станок стоит в гараже, и я туда заезжаю ненадолго.
Тут мне справедливо заметят - а на… строить такую бандуру, если можно выпилить фигуру U-образным лобзиком или электролобзиком?
Можно, но это не наш метод. Как помните в начале текста я писал, что именно идея сделать чертеж на компьютере и превратить этот чертеж в изделие и послужили толчком к созданию данного зверя.

Написание обзора меня наконец подтолкнуло произвести апгрейд станка. Т.е. апгрейд был запланирован ранее, но «руки все не доходили». Последним изменением до этого была организация домика для станка:


Таким образом в гараже при работе станка стало намного тише и намного меньше пыли летает.

Последним же апгрейдом стала установка нового шпинделя, точнее теперь у меня есть две сменные базы:
1. С китайским шпинделем 300Вт для мелкой работы:


2. С отечественным, но от того не менее китайским фрезером «Энкор»…


С новым фрезером появились новые возможности.
Быстрее обработка, больше пыли.
Вот результат использования полукруглой пазовой фрезы:

Ну и специально для MYSKU
Простая прямая пазовая фреза:


Видео процесса:

На этом я буду сворачиваться, но по правилам надо бы подвести итоги.

Минусы:
- Дорого.
- Долго.
- Время от времени приходится решать новые проблемы (отключили свет, наводки, раскрутилось что-то и др.)

Плюсы:
- Сам процесс создания. Только это уже оправдывает создание станка. Поиск решений возникающих проблем и реализация, и является тем, ради чего вместо сидения на попе ровно ты встаешь и идешь делать что-либо.
- Радость в момент дарения подарков, сделанных своими руками. Тут нужно добавить, что станок не делает всю работу сам:) помимо фрезерования необходимо это все еще обработать, пошкурить покрасить и др.

Большое Вам спасибо, если Вы еще читаете. Надеюсь, что мой пост пусть хоть и не подобьет Вас к созданию такого (или другого) станка, но сколько-то расширит кругозор и даст пищу к размышлениям. Также спасибо хочу сказать тем, кто меня уговорил написать сей опус, без него у меня и апгрейда не произошло видимо, так что все в плюсе.

Приношу извинения за неточности в формулировках и всякие лирические отступления. Многое пришлось сократить, иначе текст бы получился просто необъятный. Уточнения и дополнения естественно возможны, пишите в комментариях - постараюсь всем ответить.

Удачи Вам в Ваших начинаниях!

Обещанные ссылки на файлы:
- чертеж станка,
- развертка,
формат - dxf. Это значит, что Вы сможете открыть файл любым векторным редактором.
3Д модель детализирована процентов на 85-90, многие вещи делал, либо в момент подготовки развертки, либо по месту. Прошу «понять и простить».)

Планирую купить +151 Добавить в избранное Обзор понравился +261 +487