Большой левитрон. Левитрон с управляемым подвесом своими руками

15.01.2018 , 5,316 Просмотры

Данная самоделка представляет собой Левитрон с управляемым подвесом. Конструкция и схема достаточно просты, так что собрать её будет под силам даже не очень опытному радиолюбителю и любителю самоделок. В статье описана пошаговая инструкция сборки левитрона, следуя её, проблем с работоспособностью возникнуть не должно!

Схема левитрона

Что нужно для изготовления левитрона

  1. Транзистор IRF740A [Купить недорого ]
  2. Мультиплексор IN74LS157N
  3. Датчик Холла SS443A [Купить недорого ]
  4. Диод 1N4007 [Купить недорого ]
  5. Светодиод 12V
  6. Резисторы [Купить недорого ]
  7. Переключатель (Не включатель!!)
  8. Монтажная плата [Купить недорого ]
  9. Обмоточный провод ∅ 0.4 мм
  10. Неодимовые магниты разных размеров [Купить недорого ]
  11. Блок питания 5V 3A [Купить недорого ]
  12. Фанера и тонкий пластик

Изготовление Левитрона

Первым делом необходимо собрать корпус куда будет монтироваться вся схема, в том числе и катушка. Корпус можно изготовить по схеме ниже либо придумать свой вариант.

Первым делом из фанеры вырезаем все детали нижнего основания и при помощи клея ПВА собираем его.

Затем выпиливаем элементы стоек и так же с помощью клея склеиваем их.

После того как корпус собран, можно покрасить его в любой цвет, так он станет однотонным и привлекательным на вид, но это не обязательно конечно.

Перед сборкой схемы необходимо установить монтажную плату в корпус используя прокладку. Прокладка нужна для того, что бы обеспечить расстояние между корпусом и платой, что бы ножки деталей полностью заходили в отверстия и не возникало проблем при монтаже.

Затем вырезаем деталь где делаем отверстия для светодиода и переключателя. Эта деталь будет случить креплением для катушки.

При помощи супер клея, устанавливаем эту деталь на стойку.

Теперь необходимо подобрать стержень, его диаметр должен составлять 10 мм.

Затем вырезаем пластиковые стенки диаметром 45 мм.

С помощью супер клея промазываем внешние края стенок и основания для из фиксации.

Аккуратно продеваем провод.

Обрезаем провод с запасом, делаем надрез на стенке, укладываем туда конец провода и термоклеем фиксируем него, для того что бы избежать распускания.

Затем с помощью лезвия убираем все неровности.

Наша катушка готова. Теперь при помощи супер клея устанавливаем её на корпус, как на фото ниже.

Затем устанавливаем на корпус переключатель и светодиод и сразу же их припаиваем к отведенным для них проводам.

Затем припаиваем провода катушки и датчики холла. Длина проводов датчиков холла должна быть достаточной что бы достать до конца катушки.

Затем сгибаем датчики холла областью сенсора наружу.

Теперь при помощь изоленты крепим датчики как показано на рисунке ниже. Такой способ крепления в будущем, позволит без проблем менять расстояние между сенсорами. Дополнительно необходимо зафиксировать датчики с помощью канцелярских резинок.

Затем продеваем датчики в отверстие катушки и центруем их. Для этих целей и надевалась дополнительно канцелярская резинка.

При помощи пластиковых хомутов фиксируем все провода.

Теперь наш левитрон готов к эксплуатации!

Испытание Левитрона

Подключаем блок питания.

Меняя расстояние между датчиками, мы так же меняем длину хода подвеса.

Всё что остаётся сделать, это поместить магнит в зону датчика и наслаждаться чудесами левитации!))

Видео самоделки — Левитрон с управляемым подвесом

Левитрон - это игрушка, демонстрирующая левитацию крутящегося волчка, в котором расположен неодимовый магнит над ферритовым магнитом большего деаметра. Выглядит это удивительно!
Материалы для изготовления Левитрона
Итак, нам понадобится для изготовления игрушки три магнита в форме колец, обладающие достаточной мощностью. Вполне подойдут для нашей цели магниты из низкочастотных динамиков, срок службы которых давно истек.

Для того чтобы сделать волчок, будет нужен неодимный магнит. Взять его можно из динамика, на котором имеется надпись«Neodium transducer». Применяются подобные динамики в сотовых. Самый сильный постоянный магнит сегодня – это неодимный, созданный из сплава, в который входят неодим, бор и железо. Высокая температура негативно повлияет на него, поэтому этот магнит следует беречь от нагревания. Итак, магнит из сотового телефона может оказаться двух видов – в виде круглой пластинки или же в виде кольца. Кольцевой магнит одевается на сам волчок строго по центру, а магнит в форме таблетки приклеивается на ось волчка снизу. Материалом для самого волчка должен служить легкий материал, такой как композит или пластмасса.

Настройка левитрона
К настройке следует подойти с особой скрупулезностью, ведь эта часть работы имеет решающее значение и является наиболее трудоемкой. Кольцевые магниты должны быть соединены между собой разнополярными сторонами. Сверху на них следует установить пластину (не из металла) толщиной до 1 см. Волчок аккуратно будет установлен в основание левитрона – центр магнита. Если Вы заметили, что волчок отклоняется в сторону, значит, магнит нужно заменить на другой, с большим диаметром.

Чтобы запустить волчок, понадобятся еще несколько элементов, с помощью которых можно будет регулировать толщину платформы, чтобы достичь нормального вращения волчка. Нам понадобится пластика из оргстекла с бумажными листами. Если волчок крутится нормально, начинаем плавно приподнимать платформу, пока он не взлетит вверх.

Если наш волчок подлетает с излишней стремительностью, следует увеличить его вес. Если же он отклоняется в одну сторону, то исправить ситуацию можно, подложив бумажные листы под противоположную. Эти действия позволяют настроить основу нашей игрушки, так чтобы она находилась четко на уровне моря.

И видео с левитронами…

На просьбу подарить вам на Новый год антигравитацию Дед Мороз не должен отвечать «Миссия невыполнима». Услышите такой ответ, знайте — Дед поддельный. Потому что научные игрушки с элементами антигравитации существуют и не первый год продаются по $30-60.

Есть в Сиэтле компания под предобрым названием «Очаровательные игрушки и подарки» (Fascinations Toys and Gifts). Очарование её продукции в том, что поначалу она кажется нереальной. Правда, в отличие от фокусников, создатели необычных сувениров охотно раскрывают свои секреты.

Прежде всего, хочется сказать о «Левитроне» (Levitron) . Перед нами нечто вроде пепельницы (будем называть её основой) над которой висит в воздухе и крутится волчок. Антигравитационный такой приборчик. Развлекает «Левитрон» следующим образом:

Вы берёте в руку идущую в комплекте пластину и держите её над основой. Ставите на пластину сверху волчок и сильно раскручиваете его указательным и большим пальцами.

Затем пластину медленно поднимают, потом опускают и убирают прочь — гироскоп остаётся висеть в воздухе, вращаясь и немного покачиваясь.

Штука хорошая, но в хозяйстве практически бесполезная (фото hobbytron.net).

Никакого электричества игрушка не требует. Здесь использованы постоянные магниты, размещённые как в основе, так и в гироскопе.

С точки зрения классической физики невозможно добиться устойчивости двух отталкивающихся магнитов, один из которых плавает над другим.

Специалисты же из Fascinations объясняют, что им удалось найти исключение из правил.

Точнее, его нашёл изобретатель Рой Хэрриген (Roy M. Harrigan) и запатентовал в мае 1983 года.

Как вы догадались, вращение удерживает верхний магнит от опрокидывания. Но что мешает ему скользить боком и слететь с магнитной подушки?

Нижний магнит, и его поле соответственно, имеет сложную форму. И при отклонении волчка от центра возникает сила, подталкивающая его обратно в точку равновесия.

Так выглядит «Левитрон», сделанный своими руками (фото hcrs.at).

Сила эта очень мала и потому запуск «Левитрона» потребует тренировки.

Равновесие в этой системе настолько тонкое, что на него влияют температура в комнате или даже небольшие колебания в земном магнетизме.

В комплект игрушки входит набор из 5 грузиков — весом от 3 до 0,1 грамма. Их комбинацией достигается равновесие.

Регулируемые ножки основы позволяют установить её точно горизонтально, да, к тому же, необходимо соблюдать определённую ориентацию на стороны света.

Наконец сам процесс подъёма и удаления пластины с вращающимся гироскопом требует чрезвычайной осторожности. И, чем быстрее вы сможете закрутить волчок, тем дольше он будет парить.

Если левитирующий волчок вас в должной степени очаровал, новаторы из Сиэтла готовы предложить вам дополнительные аксессуары к «Левитрону».

Например, «Перпетуатор» (Perpetuator), на этот раз уже подключаемый к розетке. В отличие от обычной основы, здесь добавлены электромагнитные поля, которые поддерживают вращение волчка, так что он может висеть над вашим столом неделями.

Другая антигравитационная игрушка называется Art Bank . Эта коробка, внутри которой левитируют теннисный шарик, модель самолёта, монетка или фантик.

Кроме того, имеется «летающий глобус» — Amazing Anti-Gravity Globes .

Антигравитационный глобус — действительно вещь (фото fascinations.com).

Ещё одно «физическое» творение Fascinations — легкие и прозрачные водопады (Gosammer Falls). Это целая коллекция водопадиков, так сказать, для дома и офиса.

Упоминания они заслуживают потому, что в отличие от множества аналогов, демонстрируют интересный эффект.

Вода в них льётся широкой и тонкой плёнкой, которая ни разу не разрывается, ни в одном месте. Как это возможно?

Вода, выливаясь даже из тонкой протяжённой щели, стремится собраться в более-менее компактную струю, а если это невозможно — разрывается на отдельные потоки, дробится на капли.

Левитроном, как известно, называют волчок, вращающийся в воздухе над коробкой, в которой действует источник магнитного поля. Изготовить левитрон можно из популярного датчика холла.

Что такое левитрон

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

Левитрон – это игрушка. Ее нет никакого смысла покупать, если знать варианты изготовления самодельного устройства. Ничего сложного в конструкции такого левитрона не будет, если имеется обычный датчик холла, например, купленный для автомобильного трамблера, и оставленный впрок.

Следует знать, что эффект левитации наблюдается всегда в достаточно узкой зоне. Такие реалии несколько ограничивают свободу действий умельцев, однако при приложении терпения и времени, можно всегда настроить левитрон качественно и эффективно. Он практически не будет падать или скакать.

Левитрон из датчика холла

Левитрон на датчик холла и идея его изготовления проста, как и все гениальное. Благодаря силе магнитного поля в воздух поднимается кусок любого материала с электромагнитными свойствами.

Чтобы создался эффект «зависания», парения в воздухе, подключение осуществляется с большой частотой. Другими словами, магнитное поле, как бы, поднимает и бросает материал.

Схема устройства чересчур проста, и даже школьник, не просидевший уроки физики зря, сможет все самостоятельно соорудить.

  1. Нужен светодиод (цвет его подбирается в зависимости от индивидуальных предпочтений).
  2. Транзисторы RFZ 44N (хотя подойдет любой полевик, близкий к этим параметрам).
  3. Диод 1N 4007.
  4. Резисторы на 1 кОм и 330 Ом.
  5. Собственно, сам датчик холла (А3144 или другой).
  6. Медный намоточный провод размером 0,3-0,4 мм (около 20 метров будет достаточно).
  7. Неодимовый магнитик в виде таблетки 5х1 мм.
  8. 5-вольтный зарядочник, предназначенный для мобильника.

Теперь подробно о том, как проводится сборка:

  • Делается каркас для электромагнита точно с такими же параметрами, как на фото. 6 мм – диаметр, около 23 мм – длина намотки, 25 мм – диаметр щечек с запасом. Изготавливается каркас из картонки и обычного тетрадного листа, с использованием суперклея.

  • Конец медного провода фиксируется на катушке, а затем проводится наматывание (примерно 550 витков). Неважно при этом в какую сторону наматывать. Другой конец провода тоже закрепляется, катушка пока откладывается в сторону.
  • Паяем все по схеме.

  • Датчик холла припаивается на проводки, а затем ставится на катушку. Надо вдеть его внутрь катушки, зафиксировать подручными средствами.

Внимание. Чувствительная зона датчика (определить ее можно по документации к датчику холла) должна смотреть параллельно земле. Поэтому, перед тем как вдеть датчик в катушку, рекомендуется немного согнуть это место.

  • Катушка подвешивается, на нее подается питание через спаянную ранее плату. Катушка фиксируется посредством штатива.

Теперь можно проверить, как работает левитрон. Можно подвести к катушке снизу любой наэлектризованный материал. Он будет либо притягиваться катушкой, либо отталкиваться, в зависимости от полярности. Но нам нужно, чтобы материал зависал в воздухе, парил. Так оно и будет, если форма материала не слишком мала по отношению к катушке.

Примечание. Если магнит в виде таблетки маленький, то он будет левитировать не слишком эффектно. Может падать. Чтобы исключить огрехи в работе, надо сместить центр тяжести материала к низу – в качестве груза подойдет обычный кусок бумажки.

Что касается светодиода, то его можно и не ставить. С другой стороны, если хочется большего эффекта, можно организовать шоу с подсветкой.

Самодельный левитрон в классическом исполнении без датчика

Как видим, благодаря наличию датчика холла удалось изготовить вполне эффектную игрушку. Однако это вовсе не означает, что без датчика не обходится. Напротив, самодельный левитрон в классическом исполнении, это лишь большой магнит от динамика (диаметром 13-15 см) и маленький кольцевой магнит для волчка (2-3 см в диаметре), без использования датчика.

Ось волчка делается, как правило, из старой ручки или карандаша. Главное – стержень подбирается так, чтобы плотно заходил по центру кольцевого магнита. Лишняя часть ручки после этого срезается (примерно 10 см в длину вместе с закрепленным магнитом для волчка, то что надо).

Классическая схема изготовления левитрона подразумевает также наличие десятка различных шайб, вырезанных из плотной бумаги. Для чего они понадобятся? Если в вышеописанном случае тоже использовалась бумага, и как мы помним – для смещения центра тяжести вниз или проще, для настройки. То же самое и здесь. Шайбочки буду нужны для идеальной настройки волчка (при необходимости сажаются после кольцевого магнита на стержень).

Внимание. Чтобы самодельный волчок идеально левитировал, помимо настройки шайбочками, нужно не ошибиться с полярностью. Другими словами, установить кольцевой магнит соосно большому магниту.

Но и это еще не все. Как в первом случае (с использованием датчика холла), так и во втором, надо добиться идеальной ровности источника притяжения. Говоря иначе, поставить большой магнит на идеально ровную поверхность. Чтобы добиться этого, применяются деревянные подставки различной толщины. Если магнит сидит не ровно, подставки ставятся с одной стороны или с нескольких, таким образом, настраивается ровность.

Платформенные левитроны

Отличается платформенная схема левитрона, как правило, наличием не одного, а нескольких магнитов-источников. Парящий в воздухе материал или волчок будет стремиться в этом случае упасть на один из магнитов, сместившись с вертикальной оси. Чтобы этого избежать, надо суметь скорректировать центральную зону притяжения, и сделать это идеально точно.

И тут на помощь приходят те самые катушки, с вдетым внутрь датчиком холла. Пусть таких катушек будет две, и расположить их следует ровно по середине платформы, между магнитами. На схеме это будет выглядеть вот так (1 и 2 — магниты).

Из схемы становится понятно, что целью управления катушками является создание горизонтальной силы, центра притяжения. Сила эта формально названа Fss, и направлена она к оси равновесия при возникновении смещения, указанного на схеме, как Х.

Если подключить катушки так, чтобы импульс создавал зону с обратной полярностью, то можно решить вопрос со смещением. Это подтвердит любой физик.

В качестве корпуса для конструкции платформенного левитрона подбирается любой старый проигрыватель ДВД. Из него снимаются все «внутренности», устанавливаются магниты и катушки, а в целях красоты, верхняя часть закрывается практичной крышкой из тонкого, можно прозрачного материала (пропускающего магнитное поле).

Датчики холла должны выступать через отверстия платформы, должны быть распаяны на разогнутых ножках разъемов.

Что касается магнитов, то это могут быть круглые элементы толщиной в 4 мм. Желательно, чтобы один из магнитов был больше второго по диаметру. Например, 25 и 30 мм.

Существуют и более сложные варианты левитронов, изготовленные по схеме раскручивания волчка, находящегося внутри небольшого глобуса. Эти левитроны также могут строиться с использованием датчиков холла – эффективных составляющих, совершивших целую революцию в автопромышленности и других сферах человеческой деятельности.

Начитался тут всяких интернетов и решил сваять свой собственный левитрон, без всяких цифровых глупостей. Сказано – сделано. Выкладываю муки творчества на всеобщее обозрение.

1.Краткое описание

Левитрон – это устройство, удерживающее объект в равновесии с силами гравитации с помощью магнитного поля. Давно известно, что невозможно левитировать объект, используя статичные магнитные поля. В школьной физике это называлось состоянием неустойчивого равновесия, насколько я помню. Однако, затратив немного желания, знаний, усилий, денег и времени, возможно левитировать объект динамически путем использования электроники в качестве обратной связи.

Получилось вот что:

2.Фунциональная схема


Электро-магнитные датчики, расположенные на торцах катушки, выдают напряжение, пропорциональное уровню магнитной индукции. В случае отсутствия внешнего магнитного поля эти напряжения будут одинаковы вне зависимости от величины тока катушки.

При наличии постоянного магнита вблизи нижнего датчика блок управления будет формировать сигнал, пропорциональный полю магнита, усиливать его до нужного уровня и передавать на ШИМ для управления током через катушку. Таким образом, возникает обратная связь и катушка будет генерировать такое магнитное поле, которое будет удерживать магнит в равновесии с силами гравитации.

Что-то заумно все получилось, попробую по другому:
- Нет никакого магнита - индукция на торцах катушки одинакова - сигнал с датчиков одинаков - блок управления выдает минимальный сигнал - катушка работает на всю мощь;
- Близко поднесли магнит - индукция сильно разная - сигналы от датчиков сильно разные - блок управления выдает максимальный сигнал - катушка отключается совсем - магнит никто не держит и он начинает падать;
- Манит падает - отдаляется от катушки - разница сигналов с датчиков уменьшается - блок управления уменьшает выходной сигнал - ток через катушку увеличивается - увеличивается индукция катушки - магнит начинает притягиваться;
- Манит притягивается - приближается к катушке - разница сигналов с датчиков увеличивается - блок управления увеличивает выходной сигнал - ток через катушку уменьшается - уменьшается индукция катушки - магнит начинает падать;
- Чудо - магнит не падает и не притягивается - вернее, и падает и притягивается несколько тысяч раз в секунду - то есть возникает динамическое равновесие - магнит просто висит в воздухе.

3.Конструкция

Главным элементом конструкции является электро-магнитная катушка (соленоид), которая и удерживает своим полем постоянный магнит.

На пластиковый каркас D36x48 плотно намотано 78 метров медного эмалированного провода диаметром 0.6 мм, получилось где-то 600 витков. По расчетам, при сопротивлении 4.8Ом и питании 12В, ток будет 2.5А, мощность 30Вт. Это необходимо для подбора внешнего блока питания. (По факту получилось 6.0Ом, вряд ли нарезали больше провода, скорее сэкономили на диаметре.)

Внутрь катушки вставлен стальной сердечник от дверной петли диаметром 20мм. На его торцах с помощью термоклея закреплены датчики, которые обязательно должны быть ориентированы в одинаковом направлении.

Катушка с датчиками закреплена на кронштейне из алюминиевой полосы, который, в свою очередь, крепится к корпусу, внутри которого находится плата управления.

На корпусе расположен светодиод, выключатель и гнездо питания.

Внешний блок питания (GA-1040U) взят с запасом по мощности и обеспечивает ток до 3.2А при 12В.

В качестве левтитрующего объекта используется N35H магнит D15x5 с приклеенной банкой из под кока-колы. Сразу скажу, что полная банка не годится, поэтому тонким сверлом делаем отверстия по торцам, сливаем ценный напиток (можно выпить если не боитесь стружки) и к верхнему колечку клеим магнит.

4.Принципиальная схема


Сигналы с датчиков U1 и U2 подаются на операционный усилитель OP1/4, включенный по дифференциальной схеме. Верхний датчик U1 подключен к инвертирующему входу, нижний U2 – к неинвертирующему, то есть сигналы вычитаются, и на выходе OP1/4 получаем напряжение, пропорциональное только уровню магнитной индукции, создаваемому постоянным магнитом вблизи нижнего датчика U2.

Комбинация элементов C1,R6 и R7 является изюминкой данной схемы и позволяет достичь эффекта полной стабильности, магнит будет висеть как вкопанный. Как это работает? Постоянная составляющая сигнала проходит через делитель R6R7 и ослабляется в 11 раз. Переменная составляющая проходит через фильтр C1R7 без ослабления. Откуда вообще берется переменная составляющая? Постоянная часть зависит от положения магнита вблизи нижнего датчика, переменная часть возникает из-за колебаний магнита вокруг точки равновесия, т.е. от изменения положения во времени, т.е. от скорости. Нам интересно, чтобы магнит был неподвижен, т.е. его скорость была равна 0. Таким образом, в управляющем сигнале мы имеем две составляющих – постоянная отвечает за положение, а переменная – за стабильность этого положения.
Далее, подготовленный сигнал усиливается на OP1/3. С помощью переменного резистора P2 устанавливается необходимый коэффициент усиления на этапе настройки для достижения равновесия в зависимости от конкретных параметров магнита и катушки.

На OP1/1 собран простой компаратор, который отключает ШИМ и, соответственно, катушку, когда рядом нет магнита. Очень удобная вещь, не надо вынимать блок питания из розетки если убрали магнит. Уровень срабатывания задается переменным резистором P1.

Далее, управляющий сигнал подается на широтно-импульсный модулятор U3. Размах выходного напряжения 12В, частота выходных импульсов задается номиналами C2,R10 и P3, а скважность зависит от уровня входного сигнала на входе DTC.
ШИМ управляет переключением силового транзистора T1, а тот, в свою очередь, током через катушку.

Светодиод LED1 можно и не ставить, а вот диод SD1 нужен обязятельно, для слива лишнего тока и избежания перенапряжения в моменты выключения катушки из-за явления самоиндукции.

NL1 – это наша самодельная катушка, коей посвящен отдельный раздел.

В результате, в режиме равновесия, картина будет примерно такая: U1_OUT=2.9V, U2_OUT=3.6V, OP1/4_OUT=0.7V, U3_IN=1.8V, T1_OPEN=25%, NL1_CURR=0.5A.

Для наглядности прикладываю графики передаточной характеристики, АЧХ и ФЧХ, и осциллогаммы на выходе ШИМ и катушки.





5.Выбор компонентов

Устройство собрано из недорогих и доступных компонентов. Самой дорогой оказалась медная проволока WIK06N, за 78 метров WIK06N заплатил 1200 руб, все остальное, вместе взятое, обошлось значительно дешевле. Тут вообще широкое поле для экспериментов, можно обойтись без сердечника, можно взять проволоку потоньше. Главное не забывать, что индукция по оси катушки зависит от количества витков, тока по ним и геометрии катушки.

В качестве датчиков магнитного поля U1 и U2 используются аналоговые датчики Холла SS496A с линейной характеристикой вплоть до 840Гс, это самое то для нашего случая. При использовании аналогов с другой чувствительностью потребуется корректировка коэффициента усиления на OP1/3, а также проверка на уровень максимальной индукции на торцах вашей катушки (в нашем случае с сердечником она достигает 500Гс), чтобы датчики не входили в насыщение при пиковой нагрузке.

OP1 -это счетверенный операционный усилитель LM324N. При выключенной катушке выдает 20мВ вместо нуля на 14 выходе, но это вполне приемлемо. Главное не забыть выбрать из кучки 100К резисторов наиболее близкие по фактическому номиналу для установки в качестве R1,R2,R3,R4.

Номиналы C1,R6 и R7 выбраны путем проб и ошибок как самый оптимальный вариант для стабилизации магнитов разных калибров (тестировались N35H магниты D27x8, D15x5 и D12x3). Соотношение R6/R7 можно оставить как есть, а номинал C1 увеличивать до 2-5мкФ, в случае возникновения проблем.

При использовании очень маленьких магнитов, вам возможно будет не хватать коэффициента усиления, в этом случае урежьте номинал R8 до 500Ом.

D1 и D2 это обычные выпрямительные диоды 1N4001, тут подойдут любые.

В качестве широтно-импульсного модулятора U3 используется распространенная микросхема TL494CN. Частота работы задается элементами C2, R10 и P3 (по схеме 20кГц). Оптимальный диапазон 20-30кГц, при меньшей частоте появляется свист катушки. Вместо R10 и P3 можно просто поставить резистор 5.6K.

T1 это полевой транзистор IRFZ44N, подойдет и любой другой из этой же серии. При выборе других транзисторов может потребоваться установка радиатора, ориентируйтесь на минимальные значения сопротивления канала и заряда затвора.
SD1 это диод шоттки VS-25CTQ045, тут я хватанул с большим запасом, подойдет и обычный быстродействующий диод, но, возможно, будет сильно греться.

LED1 желтый светодиод L-63YT, здесь, как говорится, на вкус и цвет, можно их и побольше наставить, чтобы все светилось разноцветными огнями.

U4 это стабилизатор напряжения 5В L78L05ACZ для питания датчиков и операционного усилителя. При использовании внешнего блока питания с дополнительным выходом 5В, можно обойись и без него, но конденсаторы лучше оставить.

6.Заключение

Все получилось как задумано. Устройство стабильно работает круглые сутки, потребляет всего 6Вт. Ни диод, ни катушка, ни транзистор не греются. Прикладываю еще пару фоток и финальное видео:

7. Дисклаймер

Я не электронщик и не писатель, просто решил поделиться опытом. Может что-то покажется вам слишком очевидным, а что-то слишком сложным, а о чем-то забыл упомянуть вообще. Не стесняйтесь вносить конструктивные предложения и по тексту и по улучшению схемы, чтобы люди могли запросто это повторить, если будет такое желание.