Постоянные магниты - виды и свойства, взаимодействие магнитов. Где используются магниты

Еще в древние времена люди обнаружили уникальные свойства определенных камней - притягивание металла. В наше время мы часто сталкиваемся с предметами, которые обладают этими качествами. Что такое магнит? В чем его сила? Об этом мы расскажем в этой статье.

Примером временного магнита являются скрепки, кнопки, гвозди, нож и другие предметы обихода, изготовленные из железа. Их сила в том, что они притягиваются к постоянному магниту, а при исчезновении магнитного поля, теряют свое свойство.

Полем электромагнита можно управлять с помощью электрического тока. Как это происходит ? Провод, витками намотанный на железный сердечник, при подаче и изменении величины тока меняет силу магнитного поля и его полярность.

Типы постоянных магнитов

Ферритовые магниты являются самыми известными и активно используемыми в быту. Этот материал черного цвета может использоваться в качестве крепежей различных предметов, например, для плакатов, для настенных досок, используемых в офисе или школе. Они не теряют своих свойств притяжения при температуре не ниже 250 о С.

Альнико - магнит, состоящий из сплава алюминия, никеля и кобальта. Это дало ему такое название. Очень устойчив к высоким температурам и может применяться при 550 о С. Материал отличается легкостью, но полностью теряет свои свойства, попадая под действие более сильного магнитного поля. Используется в основном в научной отрасли.

Самариевые магнитные сплавы - это материал с высокими показателями. Надежность его свойств позволяет использовать материал в военных разработках. Он устойчив к агрессивной среде, высокой температуре, окислению и коррозии.

Что такое неодимовый магнит? Это самый популярный сплав железа, бора и неодима. Его еще называют супермагнитом, так как он имеет мощнейшее магнитное поле с высокой коэрцитивной силой. Соблюдая определенные условия во время эксплуатации, неодимовый магнит способен сохранить свои свойства на протяжении 100 лет.

Использование неодимовых магнитов

Стоит подробно рассмотреть, что такое неодимовый магнит? Это материал, который способен фиксировать потребление воды, электричества и газа в счетчиках, да и не только. Этот вид магнита относится к постоянным и редкоземельным материалам. Он устойчив перед полей других сплавов и не подвержен размагничиванию.

Изделия из неодима используют в медицинских и промышленных отраслях. Также в бытовых условиях их применяют для крепления портьер, элементов декора, сувениров. Они применяются в поисковых приборах и в электронике.

Для продления срока службы магниты такого типа покрывают цинком или никелем. В первом случае напыление более надежное, так как устойчиво к агрессивным средствам и выдерживает температуру выше 100 о С. Сила магнита зависит от его формы, размера и количества неодима, входящего в состав сплава.

Применение ферритовых магнитов

Ферриты считаются самыми популярными магнитами среди постоянных видов. Благодаря стронцию, входящему в состав, материал не поддается коррозии. Так что это такое - ферритовый магнит? Где он применяется? Этот сплав довольно хрупок. Поэтому его еще называют керамическим. Применяется ферритовый магнит в автомобилестроении и промышленности. Используется в различной технике и электроприборах, а также бытовых установках, генераторах, системах акустики. При производстве автомобилей магниты используют в системах охлаждения, стеклоподъемниках и вентиляторах.

Назначение феррита - защитить технику от внешних помех и не допустить порчи сигнала, получаемого по кабелю. Благодаря этому используют при производстве навигаторов, мониторов, принтеров и другого оборудования, где важно получить чистый сигнал или изображение.

Магнитотерапия

Нередко применяется процедура называется магнитотерапия и проводится в лечебных целях. Действие этого метода заключается в том, чтобы повлиять на организм пациента с помощью магнитных полей, находящихся под низкочастотным переменным или постоянным током. Этот метод лечения помогает избавиться от многих заболеваний, снять боли, укрепить иммунную систему, улучшить кровоток.

Считается, что болезни порождаются нарушением магнитного поля человека. Благодаря физиотерапии организм приходит в норму и общее состояние улучшается.

Из данной статьи вы узнали, что такое магнит, а также изучили его свойства и сферы применения.


Благодаря появлению сплава на основе Nd -Fe -B (неодима, железа и бора) применение магнитов в промышленности было существенно расширено. Среди ключевых преимуществ этого редкоземельного магнита по сравнению с используемыми ранее SmCo и Fe-P особенно стоит отметить его доступность. Сочетая высокую силу сцепления с компактными размерами и длительным сроком службы, такие изделия стали востребованы в самых разных сферах хозяйственной деятельности.


Использование неодимовых магнитов в различных промышленных отраслях


Ограничения при использовании редкоземельных магнитов на основе неодима связаны с их слабостью к перегреву. Верхний показатель рабочей температуры для стандартных изделий составляет +80⁰C , а для модифицированных термостойких сплавов - +200⁰C . С учетом этой особенности применение неодимовых магнитов в промышленности охватывает следующие сферы:


1) Компьютерная техника. Значительная часть от общего объема магнитной продукции используются в производстве DVD -приводов и винчестеров для ПК. Пластина из неодимового сплава используется в конструкции головки чтения/записи. Неодимовый магнит – неотъемлемая часть динамиков в смартфонах и планшетах. Для защиты от размагничивания из-за воздействия внешних полей этот элемент закрывают с помощью специальных экранирующих материалов.


2) Медицина. Компактные и мощные постоянные магниты находят свое применение при изготовлении приборов для магнитно-резонансной томографии. Такие устройства оказываются значительно экономичнее и надежнее по сравнению с устройствами, в которых установлены электромагниты.


3) Строительство. На строительных площадках различного уровня используются практичные и удобные магнитные фиксаторы, которые успешно вытесняют сварные формы. С помощью магнитов подготавливают воду для замешивания цементного раствора. Благодаря особым свойствам омагниченной жидкости получаемый бетон быстрее застывает, обладая при этом повышенной прочностью.


4) Транспорт. Редкоземельные магниты незаменимы при производстве современных электродвигателей, роторов и турбин. Появление неодимового сплава обеспечило снижение стоимости оборудования при улучшении его эксплуатационных свойств. В частности, мощные и в то же время компактные постоянные магниты позволили уменьшить габариты электродвигателей, снизить силу трения и увеличить КПД.


5) Нефтепереработка. Магниты устанавливают на трубопроводные системы, что позволяет защитить их от образования осадка органических и неорганических отложений. Благодаря такому эффекту появилась возможность создать более экономичные и не вредящие окружающей среде системы с замкнутым технологическим циклом.


6) Сепараторы и железоотделители. На многих производственных предприятиях необходимо обеспечить отсутствие металлических примесей в жидких или сыпучих материалах. Неодимовые магниты позволяют с минимальными затратами и максимальной эффективностью справиться с этой задачей. Это позволяет не допустить попадания металлических загрязнений в готовую продукцию и защитить промышленное оборудование от поломок.
  • Ш Магнитные носители информации: VHS кассеты содержат катушки из магнитной ленты. Видео и звуковая информация кодируется на магнитном покрытии на ленте. Также в компьютерных дискетах и жестких дисках запись данных происходит на тонком магнитном покрытии. Однако носители информации не являются магнитами в строгом смысле, так как они не притягивают предметы. Магниты в жёстких дисках используются в ходовом и позиционирующем электродвигателях.
  • Ш Кредитные, дебетовые, и ATM карты: Все эти карточки имеют магнитную полосу на одной стороне. Эта полоса кодирует информацию, необходимую для соединения с финансовым учреждением и связи с их счетами.
  • Ш Обычные телевизоры и компьютерные мониторы: телевизоры и компьютерные мониторы, содержащие электронно-лучевую трубку используют электромагнит для управления пучком электронов и формирования изображения на экране. Плазменные панели и ЖК мониторы используют другие технологии.
  • Ш Громкоговорители и микрофоны: большинство громкоговорителей используют постоянный магнит и токовую катушку для преобразования электрической энергии (сигнала) в механическую энергию (движение, которое создает звук). Обмотка намотана на катушку, прикрепляется к диффузору и по ней протекает переменный ток, который взаимодействует с полем постоянного магнита.
  • Ш Другой пример использования магнитов в звукотехнике -- в головке звукоснимателя электрофона и в кассетных диктофонах в качестве экономичной стирающей головки.
  • Ш Магнитный сепаратор тяжелых минералов
  • Ш Электродвигатели и генераторы: некоторые электрические двигатели (так же, как громкоговорители) основываются на комбинации электромагнита и постоянного магнита. Они преобразовывают электрическую энергию в механическую энергию. Генератор, наоборот, преобразует механическую энергию в электрическую энергию путем перемещения проводника через магнитное поле.
  • Ш Трансформаторы: устройства передачи электрической энергии между двумя обмотками провода, которые электрически изолированы, но связаны магнитно.
  • Ш Магниты используются в поляризованных реле. Такие устройства запоминают своё состояние на время выключения питания.
  • Ш Компасы: компас (или морской компас) является намагниченным указателем, который может свободно вращаться и ориентируется на направление магнитного поля, чаще всего магнитного поля Земли.
  • Ш Искусство: виниловые магнитные листы могут быть присоединены к живописи, фотографии и другим декоративным изделиям, что позволяет присоединять их к холодильникам и другим металлическим поверхностям.
  • Ш Магниты часто используются в игрушках. M-TIC использует магнитные стержни, связанные с металлическими сферами
  • Ш Игрушки: Учитывая их способность противостоять силе тяжести на близком расстоянии, магниты часто используются в детских игрушках с забавными эффектами.
  • Ш Магниты могут использоваться для производства ювелирных изделий. Ожерелья и браслеты могут иметь магнитную застежку, или могут быть изготовлены полностью из серии связанных магнитов и черных бусин.
  • Ш Магниты могут поднимать магнитные предметы (железные гвозди, скобы, кнопки, скрепки), которые либо являются слишком мелкими, либо их трудно достать или они слишком тонкие чтобы держать их пальцами. Некоторые отвертки специально намагничиваются для этой цели.
  • Ш Магниты могут использоваться при обработке металлолома для отделения магнитных металлов (железа, стали и никеля) от немагнитных (алюминия, цветных сплавов и т. д.). Та же идея может быть использована в рамках так называемого «Магнитного испытания», в которой кузов автомобиля обследуется с магнитом для выявления областей, отремонтированых с использованием стекловолокна или пластиковой шпатлевки.
  • Ш Маглев: поезд на магнитном подвесе, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления..
  • Ш Магниты используются в фиксаторах мебельных дверей.
  • Ш Если магниты поместить в губки, то эти губки можно использовать для мытья тонких листовых немагнитных материалов сразу с обеих сторон, причём одна сторона может быть труднодоступной. Это могут быть, например, стёкла аквариума или балкона.
  • Ш Магниты используются для передачи вращающего момента «сквозь» стенку, которой может являться, например, герметичный контейнер электродвигателя. Так была устроена игрушка ГДР «Подводная лодка».
  • Ш Магниты совместно с герконом применяются в специальных датчиках положения. Например, в датчиках дверей холодильников и охранных сигнализаций.
  • Ш Магниты совместно с датчиком Холла используют для определения углового положения или угловой скорости вала.
  • Ш Магниты используются в искровых разрядниках для ускорения гашения дуги.
  • Ш Магниты используются при неразрушающем контроле магнитопорошковым методом (МПК)
  • Ш Магниты используются для отклонения пучков радиоактивных и ионизирующих излучений, например при наблюдении в камерах.
  • Ш Магниты используются в показывающих приборах с отклоняющейся стрелкой, например, амперметр. Такие приборы весьма чувствительны и линейны.
  • Ш Магниты применяются в СВЧ вентилях и циркуляторах.
  • Ш Магниты применяются в составе отклоняющей системы электронно-лучевых трубок для подстройки траектории электронного пучка.
  • Ш До открытия закона сохранения энергии, было много попыток использовать магниты для построения «вечного двигателя». Людей привлекала, казалось бы, неисчерпаемая энергия магнитного поля постоянного магнита, которые были известны очень давно. Но рабочий макет так и не был построен.

Одно из самых удивительных явлений природы – это проявление магнетизма у некоторых материалов. Постоянные магниты известны с древних времён. До свершения великих открытий в сфере электричества постоянные магниты активно использовались лекарями разных народов в медицине. Доставались они людям из недр земли в виде кусков магнитного железняка. Со временем люди научились создавать искусственные магниты, помещая изделия из сплавов железа рядом с природными источниками магнитного поля.

Природа магнетизма

Демонстрация свойств магнита в притягивании к себе металлических предметов у людей вызывает вопрос: что такое представляют собой постоянные магниты? Какова же природа такого явления, как возникновение тяги металлических предметов в сторону магнетита?

Первое объяснение природы магнетизма дал в своей гипотезе великий учёный – Ампер. В любой материи протекают электрические токи той или иной степени силы. Иначе их называют токами Ампера. Электроны, вращаясь вокруг собственной оси, вдобавок обращаются вокруг ядра атома. Благодаря этому, возникают элементарные магнитные поля, которые взаимодействуя между собой, формируют общее поле вещества.

В потенциальных магнетитах при отсутствии внешнего воздействия поля элементов атомной решётки ориентированы хаотически. Внешнее магнетическое поле «выстраивает» микрополя структуры материала в строго определённом направлении. Потенциалы противоположных концов магнетита взаимно отталкиваются. Если приближать одинаковые полюсы двух полосовых ПМ, то руки человека ощутят сопротивление движению. Разные полюсы будут стремиться друг к другу.

При помещении стали или железного сплава во внешнее магнитное поле происходит строгое ориентирование внутренних полей металла в одном направлении. В результате этого материал приобретает свойства постоянного магнита (ПМ).

Как увидеть магнитное поле

Чтобы визуально ощутить структуру магнитного поля, достаточно провести несложный эксперимент. Для этого берут два магнита и мелкую металлическую стружку.

Важно! В обиходе постоянные магниты встречаются двух форм: в виде прямой полосы и подковы.

Накрыв полосовой ПМ листом бумаги, на него насыпают железные опилки. Частички мгновенно выстраиваются вдоль силовых линий магнитного поля, что даёт наглядное представление о данном явлении.

Виды магнитов

Постоянные магниты разделяют на 2 вида:

  • естественные;
  • искусственные.

Естественные

В природе естественный постоянный магнит – это ископаемое в виде обломка железняка. Магнитная порода (магнетит) в каждом народе имеет своё название. Но в каждом наименовании присутствует такое понятие, как «любящий», «притягивающий металл». Название Магнитогорск означает расположение города рядом с горными залежами естественного магнетита. В течение многих десятков лет здесь велась активная добыча магнитной руды. На сегодня от Магнитной горы ничего не осталось. Это была разработка и добыча естественного магнетита.

Пока человечеством не был достигнут должный уровень научно-технического прогресса, естественные постоянные магниты служили для разных забав и фокусов.

Искусственные

Искусственные ПМ получают путём наведения внешнего магнитного поля на различные металлы и их сплавы. Было замечено, что одни материалы сохраняют приобретённое поле в течение длительного времени – их называют твёрдыми магнитами. Быстро теряющие свойства постоянных магнитов материалы носят называние мягких магнитов.

В условиях заводского производства применяют сложные металлические сплавы. В структуру сплава «магнико» входят железо, никель и кобальт. В состав сплава «альнико» вместо железа включают алюминий.

Изделия из этих сплавов взаимодействуют с мощными электромагнитными полями. В результате получают достаточно мощные ПМ.

Применение постоянных магнитов

Немаловажное значение имеют ПМ в различных областях деятельности человека. В зависимости от сферы применения, ПМ обладают различными характеристиками. В последнее время активно применяемый основной магнитный сплав NdFeB состоит из следующих химических элементов:

  • «Nd» – ниодия,
  • «Fe» – железа,
  • «B» – бора.

Сферы, где применяют постоянные магниты:

  1. Экология;
  2. Гальваника;
  3. Медицина;
  4. Транспорт;
  5. Компьютерные технологии;
  6. Бытовые приспособления;
  7. Электротехника.

Экология

Разработаны и действуют различные системы очистки отходов промышленного производства. Магнитные системы очищают жидкости во время производства аммиака, метанола и других веществ. Магнитные улавливатели «выбирают» из потока все железосодержащие частицы.

Кольцевидные ПМ устанавливают внутри газоходов, которые избавляют газообразные выхлопы от ферромагнитных включений.

Сепараторные магнитные ловушки активно отбирают металлосодержащий мусор на конвейерных линиях переработки техногенных отходов.

Гальваника

Гальваническое производство основано на движении заряженных ионов металла к противоположным полюсам электродов постоянного тока. ПМ играют роль держателей изделий в гальваническом бассейне. В промышленных установках с гальваническими процессами устанавливают магниты только из сплава NdFeB.

Медицина

В последнее время производителями медицинского оборудования широко рекламируются приборы и устройства на основе постоянных магнитов. Постоянное интенсивное поле обеспечивается характеристикой сплава NdFeB.

Свойство постоянных магнитов используют для нормализации кровеносной системы, погашения воспалительных процессов, восстановления хрящевых тканей и прочее.

Транспорт

Транспортные системы на производстве оснащены установками с ПМ. При конвейерном перемещении сырья магниты удаляют из массива ненужные металлические включения. С помощью магнитов направляют различные изделия в разные плоскости.

Обратите внимание! Постоянные магниты используют для сепарации таких материалов, где присутствие людей может пагубно сказаться на их здоровье.

Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ. Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое.

Компьютерные технологии

Все подвижные приборы и устройства в компьютерной технике оснащены магнитными элементами. Перечень включает в себя принтеры, движки драйверов, моторчики дисководов и другие устройства.

Бытовые приспособления

В основном это держатели небольших предметов быта. Полки с магнитными держателями, крепления штор и занавесок, держатели набора кухонных ножей и ещё масса приборов домашнего обихода.

Электротехника

Электротехника, построенная на ПМ, касается таких сфер, как радиотехнические устройства, генераторы и электродвигатели.

Радиотехника

ПМ используют с целью повышения компактности радиотехнических приборов, обеспечения автономности устройств.

Генераторы

Генераторы на ПМ решают проблему подвижных контактов – колец со щётками. В традиционных устройствах промышленного назначения остро стоят вопросы, связанные со сложным обслуживанием оборудования, быстрым износом деталей, значительной потерей энергии в цепях возбуждения.

Единственным препятствием на пути создания таких генераторов является проблема крепления ПМ на вращающемся роторе. В последнее время магниты располагают в продольных пазах ротора, заливая их легкоплавким материалом.

Электродвигатели

В бытовой технике и в некотором промышленном оборудовании получили распространение синхронные электрические двигатели на постоянных магнитах – это вентильные моторы постоянного тока.

Как и в вышеописанных генераторах, ПМ устанавливают на роторах, вращающихся внутри статоров с неподвижной обмоткой. Главное преимущество электродвигателя заключается в отсутствии недолговечных токопроводящих контактов на коллекторе ротора.

Двигатели такого типа – это маломощные устройства. Однако это нисколько не преуменьшает их полезность применения в области электротехники.

Дополнительная информация. Отличительная особенность устройства – это наличие датчика Холла, регулирующего обороты ротора.

Автор надеется, что по прочтении данной статьи у читателя сложится понятное представление о том, что такое постоянный магнит. Активное внедрение постоянных магнитов в сферу деятельности человека стимулирует изобретения и создание новых ферромагнитных сплавов, имеющих повышенные магнетические характеристики.

Видео

Существует два основных типа магнитов: постоянные и электромагниты. Определить, что же такое постоянный магнит, можно на основании главного его свойства. Постоянный магнит получил свое название за то, что его магнетизм всегда «включен». Он генерирует собственное магнитное поле, в отличие от электромагнита, сделанного из проволоки, обернутой вокруг железного сердечника, и требующего протекания тока для создания магнитного поля.

История изучения магнитных свойств

Столетия назад люди открыли, что некоторые типы горных пород обладают оригинальными особенностями: притягиваются к железным предметам. Упоминание о магнетите встречается в древних исторических летописях: больше двух тысячелетий назад в европейских и намного ранее в восточноазиатских. Сначала он оценивался как любопытный предмет.

Позже магнетит стали использовать для навигации, обнаружив, что он стремится занять определенное положение, когда ему предоставлена свобода вращения. Научное исследование, проведенное П. Перегрином в 13-м веке, показало, что сталь может приобрести эти особенности после потирания магнетитом.

У намагниченных предметов было два полюса: «северный» и «южный», относительно магнитного поля Земли. Как обнаружил Перегрин, изоляция одного из полюсов не представлялась возможной, если разрезать осколок магнетита надвое, – каждый отдельный фрагмент имел в результате собственную пару полюсов.

В соответствии с сегодняшними представлениями магнитное поле постоянных магнитов – это результирующая ориентация электронов в едином направлении. Только некоторые разновидности материалов взаимодействуют с магнитными полями, значительно меньшее их количество способно сохранять постоянное МП.

Свойства постоянных магнитов

Основными свойствами постоянных магнитов и создаваемого ими поля являются:

  • существование двух полюсов;
  • противоположные полюса притягиваются, а одноименные отталкиваются (как положительные и отрицательные заряды);
  • магнитная сила незаметно распространяется в пространстве и проходит через объекты (бумага, дерево);
  • наблюдается усиление интенсивности МП вблизи полюсов.

Постоянные магниты поддерживают МП без внешней помощи. Материалы в зависимости от магнитных свойств делятся на основные виды:

  • ферромагнетики – легко намагничивающиеся;
  • парамагнетики – намагничиваются с большим трудом;
  • диамагнетики – склонны отражать внешнее МП путем намагничивания в противоположном направлении.

Важно! Магнито-мягкие материалы, такие как сталь, проводят магнетизм при прикреплении к магниту, но это прекращается при его удалении. Постоянные магниты изготавливаются из магнито-твердых материалов.

Как работает постоянный магнит

Его работа связана с атомной структурой. Все ферромагнетики создают естественное, хотя и слабое, МП, благодаря электронам, окружающим ядра атомов. Эти группы атомов способны ориентироваться в едином направлении и называются магнитными доменами. Каждый домен обладает двумя полюсами: северным и южным. Когда ферромагнитный материал не намагничен, его области ориентированы в случайных направлениях, а их МП компенсируют друг друга.

Чтобы создать постоянные магниты, ферромагнетики нагреваются при очень высоких температурах и подвергаются воздействию сильного внешнего МП. Это приводит к тому, что отдельные магнитные домены внутри материала начинают ориентироваться по направлению внешнего МП до тех пор, пока все домены не выровняются, достигнув точки магнитного насыщения. Затем материал охлаждают, и выровненные домены блокируются в нужном положении. После удаления внешнего МП магнито-твердые материалы будут удерживать большую часть своих доменов, создавая постоянный магнит.

Характеристики постоянного магнита

  1. Магнитную силу характеризует остаточная магнитная индукция. Обозначается Br. Это та сила, которая остается после исчезновения внешнего МП. Измеряется в тестах (Тл) или гауссах (Гс);
  2. Коэрцитивность или сопротивление размагничиванию – Нс. Измеряется в А/м. Показывает, какова должна быть напряженность внешнего МП для того, чтобы размагнитить материал;
  3. Максимальная энергия – BHmax. Рассчитывается путем умножения остаточной магнитной силы Br и коэрцитивности Нс. Измеряется в МГсЭ (мегагауссэрстед);
  4. Коэффициент температуры остаточной магнитной силы – Тс of Br. Характеризует зависимость Br от температурного значения;
  5. Tmax – наивысшее значение температуры, при достижении которого постоянные магниты утрачивают свойства с возможностью обратного восстановления;
  6. Tcur – наивысшее значение температуры, когда магнитный материал безвозвратно утрачивает свойства. Этот показатель называется температурой Кюри.

Индивидуальные характеристики магнита изменяются в зависимости от температуры. При разных значениях температуры разные типы магнитных материалов работают по-разному.

Важно! Все постоянные магниты теряют процент магнетизма при подъеме температуры, но с разной скоростью, зависящей от их типа.

Типы постоянных магнитов

Всего существует пять типов постоянных магнитов, каждый из которых изготовляется по-разному на основе материалов с отличающимися свойствами:

  • альнико;
  • ферриты;
  • редкоземельные SmCo на основе кобальта и самария;
  • неодимовые;
  • полимерные.

Альнико

Это постоянные магниты, состоящие в основном из комбинации алюминия, никеля и кобальта, но могут также включать медь, железо и титан. Благодаря свойствам магнитов альнико, они могут работать при самых высоких температурах, сохраняя свой магнетизм, однако они легче размагничиваются, чем ферритовые или редкоземельные SmCo. Они были первыми серийными постоянными магнитами, заменяющими намагниченные металлы и дорогие электромагниты.

Применение:

  • электродвигатели;
  • термическая обработка;
  • подшипники;
  • аэрокосмические аппараты;
  • военная техника;
  • высокотемпературное погрузо-разгрузочное оборудование;
  • микрофоны.

Ферриты

Для изготовления ферритовых магнитов, известных еще как керамические, применяются карбонат стронция и оксид железа, в соотношении 10/90. Оба материала в изобилии и экономически доступны.

Из-за низких издержек производства, устойчивости к нагреву (до 250°C) и коррозии ферритовые магниты – одни из самых популярных для повседневного применения. Они имеют большую внутреннюю коэрцитивность, чем альнико, но меньшую магнитную силу, чем неодимовые аналоги.

Применение:

  • звуковые колонки;
  • охранные системы;
  • большие пластинчатые магниты для удаления загрязнения железом технологических линий;
  • электродвигатели и генераторы;
  • медицинские инструменты;
  • подъемные магниты;
  • морские поисковые магниты;
  • устройства, основанные на работе вихревых токов;
  • выключатели и реле;
  • тормоза.

Редкоземельные магниты SmCo

Магниты из кобальта и самария работают в широком температурном диапазоне, имеют высокие температурные коэффициенты и высокую коррозионную стойкость. Этот вид сохраняет магнитные свойства даже при температурах ниже абсолютного нуля, что делает их популярными для использования в криогенных установках.

Применение:

  • турботехника;
  • насосные муфты;
  • влажные среды;
  • высокотемпературные устройства;
  • миниатюрные гоночные автомобили с электроприводом;
  • радиоэлектронные устройства для работы в критических условиях.

Неодимовые магниты

Сильнейшие существующие магниты, состоящие из сплава неодима, железа и бора. Благодаря их огромной силе, даже миниатюрные магниты эффективны. Это обеспечивает универсальность использования. Каждый человек постоянно находится рядом с одним из неодимовых магнитов. Они есть, например, в смартфоне. Изготовление электродвигателей, медтехника, радиоэлектроника опираются на сверхпрочные неодимовые магниты. Из-за их сверхпрочности, огромной магнитной силы и стойкости к размагничиванию возможно изготовление образцов до 1 мм.

Применение:

  • жесткие диски;
  • звуковоспроизводящие устройства – микрофоны, акустические датчики, наушники, громкоговорители;
  • протезы;
  • насосы с магнитной связью;
  • дверные доводчики;
  • двигатели и генераторы;
  • замки на ювелирных изделиях;
  • сканеры МРТ;
  • магнитотерапия;
  • датчики ABS в автомобилях;
  • подъемное оборудование;
  • магнитные сепараторы;
  • герконовые переключатели и т. д.

Гибкие магниты содержат магнитные частицы, находящиеся внутри полимерного связующего. Используются для уникальных устройств, где невозможна установка твердых аналогов.

Применение:

  • дисплейная реклама – быстрая фиксация и быстрое удаление на выставках и мероприятиях;
  • знаки транспортных средств, учебные школьные панели, логотипы компаний;
  • игрушки, головоломки и игры;
  • маскирование поверхностей для окраски;
  • календари и магнитные закладки;
  • оконные и дверные уплотнения.

Большинство постоянных магнитов являются хрупкими и не должны использоваться в качестве структурных элементов. Они изготавливаются в стандартных формах: кольца, стержни, диски, и индивидуальных: трапеции, дуги и др. Неодимовые магниты из-за высокого содержания железа подвержены коррозии, поэтому покрываются сверху никелем, нержавеющей сталью, тефлоном, титаном, каучуком и другими материалами.

Видео