Разводка дифференциальных сигналов. Максимально дифференциальные Везде ли возможно применение датчиков

Дифференциальный усилитель - это широко известная схема, используемая для усиления разности напряжений двух входных сигналов. В идеальном случае выходной сигнал не зависит от уровня каждого из входных сигналов, а определяется только их разностью. Когда уровни сигналов на обоих входах изменяются одновременно, то такое изменение входного сигнала называют синфазным. Дифференциальный или разностный входной сигнал называют еще нормальным или полезным. Хороший дифференциальный усилитель обладает высоким коэффициентом ослабления синфазного сигнала (КОСС), который представляет собой отношение выходного полезного сигнала к выходному синфазному сигналу, при условии что полезный и синфазный входные сигналы имеют одинаковую амплитуду. Обычно КОСС определяют в децибелах. Диапазон изменения синфазного входного сигнала задает допустимые уровни напряжения, относительно которого должен изменяться входной сигнал.

Дифференциальные усилители используют в тех случаях, когда слабые сигналы можно потерять на фоне шумов. Примерами таких сигналов являются цифровые сигналы, передаваемые по длинным кабелям (кабель обычно состоит из двух скрученных проводов), звуковые сигналы (в радиотехнике понятие «балансный» импедане обычно связывают с дифференциальным импедансом 600 Ом), радиочастотные сигналы (двухжильный кабель является дифференциальным), напряжения электрокардиограмм, сигналы считывания информации из магнитной памяти и многие другие.

Рис. 2.67. Классический транзисторный дифференциальный усилитель.

Дифференциальный усилитель на приемном конце восстанавливает первоначальный сигнал, если синфазные помехи не очень велики. Дифференциальные каскады широко используют при построении операционных усилителей, которые мы рассматриваем ниже. Они играют важную роль при разработке усилителей постоянного тока (которые усиливают частоты вплоть до постоянного тока, т.е. не используют для межкаскадной связи конденсаторы): их симметричная схема по сути своей приспособлена для компенсации температурного дрейфа.

На рис. 2.67 показана основная схема дифференциального усилителя. Выходное напряжение измеряется на одном из коллекторов относительно потенциала земли; такой усилитель называют схемой с однополюсным выходом или разностным усилителем и он распространен наиболее широко. Этот усилитель можно рассматривать как устройство, которое усиливает дифференциальный сигнал и преобразует его в несимметричный сигнал, с которым могут работать обычные схемы (повторители напряжения, источники тока и т. п.). Если же нужен дифференциальный сигнал, то его снимают между коллекторами.

Чему равен коэффициент усиления этой схемы? Его нетрудно подсчитать: допустим, на вход подается дифференциальный сигнал, при этом напряжение на входе 1 увеличивается на величину (изменение напряжения для малого сигнала по отношению ко входу).

До тех пор пока оба транзистора находятся в активном режиме, потенциал точки А фиксирован. Коэффициент усиления можно определить как и в случае усилителя на одном транзисторе, если заметить, что входной сигнал оказывается дважды приложенным к переходу база-эмиттер любого транзистора: . Сопротивление резистора обычно невелико (100 Ом и меньше), а иногда этот резистор вообще отсутствует. Дифференциальное напряжение обычно усиливается в несколько сотен раз.

Для того чтобы определить коэффициент усиления синфазного сигнала, на оба входа усилителя нужно подать одинаковые сигналы . Если вы внимательно рассмотрите этот случай (и вспомните, что через резистор протекают оба эмиттерных тока), то получите . Мы пренебрегаем сопротивлением , так как резистор обычно выбирают большим - его сопротивление составляет по крайней мере несколько тысяч ом. На самом деле сопротивлением тоже можно пренебречь. КОСС приблизительно равен . Типичным примером дифференциального усилителя является схема, представленная на рис. 2.68. Рассмотрим, как она работает.

Сопротивление резистора выбрано так, чтобы коллекторный ток покоя можно было взять равным . Как обычно, для получения максимального динамического диапазона потенциал коллектора установлен равным 0,5 . У транзистора коллекторный резистор отсутствует, так как его выходной сигнал снимается с коллектора другого транзистора. Сопротивление резистора выбрано таким, что суммарный ток равен и поровну распределен между транзисторами, когда входной (дифференциальный) сигнал равен нулю.

Рис. 2.68. Вычисление характеристик дифференциального усилителя.

Согласно только что выведенным формулам коэффициент усиления дифференциального сигнала равен 30, а коэффициент усиления синфазного сигнала равен 0,5. Если исключить из схемы резисторы 1,0 кОм, то коэффициент усиления дифференциального сигнала станет равен 150, но при этом уменьшится входное (дифференциальное) сопротивление с 250 до 50 кОм (если необходимо, чтобы величина этого сопротивления имела порядок мегаом, то во входном каскаде можно использовать транзисторы Дарлингтона).

Напомним, что в несимметричном усилителе с заземленным эмиттером при выходном напряжении покоя 0,5 максимальное усиление равно , где выражено в вольтах. В дифференциальном усилителе максимальное дифференциальное усиление (при вдвое меньше, т.е. численно равно двадцатикратному падению напряжения на коллекторном резисторе при аналогичном выборе рабочей точки. Соответствующий максимальный КОСС (при условии, что также численно в 20 раз превышает падение напряжения на

Упражнение 2.13. Убедитесь, что приведенные соотношения правильны. Разработайте дифференциальный усилитель по вашим собственным требованиям.

Дифференциальный усилитель можно образно назвать «длиннохвостой парой», так как, если длина резистора на условном обозначении пропорциональна величине его сопротивления, схему можно изобразить в таком виде, как показано на рис. 2.69. «Длинный хвост» определяет подавление синфазного сигнала, а небольшие сопротивления межэмиттерной связи (включающие собственные сопротивления эмиттеров) - усиление дифференциального сигнала.

Смещение с помощью источника тока.

Усиление синфазного сигнала в дифференциальном усилителе можно значительно уменьшить, если резистор заменить источником тока. При этом действующее значение сопротивления станет очень большим, а усиление синфазного сигнала будет ослаблено почти до нуля. Представим себе, что на входе действует синфазный сигнал; источник тока в эмиттерной цепи поддерживает полный эмиттерный ток постоянным, и он (в силу симметрии схемы) равномерно распределяется между двумя коллекторными цепями. Следовательно, сигнал на выходе схемы не изменяется. Пример подобной схемы приведен на рис. 2.70. Для этой схемы, в которой использованы монолитная транзисторная пара типа (транзисторы и ) и источник тока типа , величина КОСС определяется отношением дБ). Диапазон входного синфазного сигнала ограничен значениями -12 и ; нижний предел определяется рабочим диапазоном источника тока в эмиттерной цепи, а верхний - коллекторным напряжением покоя.

Рис. 2.70. Увеличение КОСС дифференциального усилителя с помощью источника тока.

Не забывайте о том, что в этом усилителе, как и во всех транзисторных усилителях, должны быть предусмотрены цепи смещения по постоянному току. Если, например, для межкаскадной связи на входе используется конденсатор, то должны быть включены заземленные базовые резисторы. Еще одно предостережение относится в особенности к дифференциальным усилителям без эмиттерных резисторов: биполярные транзисторы могут выдержать обратное смещение на переходе база-эмиттер величиной не более 6 В, затем наступает пробой; значит, если подать на вход дифференциальное входное напряжение большей величины, то входной каскад будет разрушен (при условии, что отсутствуют эмиттерные резисторы). Эмиттерный резистор ограничивает ток пробоя и предотвращает разрушение схемы, но характеристики транзисторов могут в этом случае деградировать (коэффициент , шумы и др.). В любом случае входной импеданс существенно падает, если возникает обратная проводимость.

Применения дифференциальных схем в усилителях постоянного тока с однополюсным выходом.

Дифференциальный усилитель может прекрасно работать как усиnлитель постоянного тока даже с несимметричными (односторонними) входными сигналами. Для этого нужно один из его входов заземлить, а на другой подать сигнал (рис. 2.71). Можно ли исключить «неиспользуемый» транзистор из схемы? Нет. Дифференциальная схема обеспечивает компенсацию температурного дрейфа, и, даже когда один вход заземлен, транзистор выполняет некоторые функции: при изменении температуры напряжения изменяются на одинаковую величину, при этом не происходит никаких изменений на выходе и не нарушается балансировка схемы. Это значит, что изменение напряжения не усиливается с коэффициентом Кдиф (его усиление определяется коэффициентом Ксинф, который можно уменьшить почти до нуля). Кроме того, взаимная компенсация напряжений приводит к тому, что на входе не нужно учитывать падения напряжения величиной 0,6 В. Качество такого усилителя постоянного тока ухудшается только из-за несогласованности напряжений или их температурных коэффициентов. Промышленность выпускает транзисторные пары и интегральные дифференциальные усилители с очень высокой степенью согласования (например, для стандартной согласованной монолитной пары n-p-n-транзисторов типа дрейф напряжения определяется величиной или за месяц).

Рис. 2.71. Дифференциальный усилитель может работать как прецизионный усилитель постоянного тока с однополюсным выходом.

В предыдущей схеме можно заземлить любой из входов. В зависимости от того, какой вход заземлен, усилитель будет или не будет инвертировать сигнал. (Однако, из-за наличия эффекта Миллера, речь о котором пойдет в разд. 2.19, приведенная здесь схема предпочтительна для диапазона высоких частот). Представленная схема является неинвертирующей, значит, в ней заземлен инвертирующий вход. Терминология, относящаяся к дифференциальным усилителям, распространяется также на операционные усилители, которые представляют собой те же дифференциальные усилители с высоким коэффициентом усиления.

Использование токового зеркала в качестве активной нагрузки.

Иногда желательно, чтобы однокаскадный дифференциальный усилитель, как и простой усилитель с заземленным эмиттером, имел большой коэффициент усиления. Красивое решение дает использование токового зеркала в качестве активной нагрузки усилителя (рис. 2.72). Транзисторы образуют дифференциальную пару с источником тока в эмиттерной цепи. Транзисторы , образующие токовое зеркало, выступают в качестве коллекторной нагрузки. Тем самым обеспечивается высокое значение сопротивления коллекторной нагрузки, благодаря этому коэффициент усиления по напряжению дрстигает 5000 и выше при условии, что нагрузка на выходе усилителя отсутствует. Такой усилитель используют, как правило, только в схемах, охваченных петлей обратной связи, или в компараторах (их мы рассмотрим в следующем разделе). Запомните, что нагрузка для такого усилителя обязательно должна иметь большой импеданс, иначе усиление будет существенно ослаблено.

Рис. 2.72. Дифференциальный усилитель с токовым зеркалом в качестве активной нагрузки.

Дифференциальные усилители как схемы расщепления фазы.

На коллекторах симметричного дифференциального усилителя возникают сигналы, одинаковые по амплитуде, но с противоположными фазами. Если снимать выходные сигналы с двух коллекторов, то получим схему расщепления фазы. Конечно, можно использовать дифференциальный усилитель с дифференциальными входами и выходами. Дифференциальный выходной сигнал можно затем использовать для управления еще одним дифференциальным усилительным каскадом, величина КОСС для всей схемы при этом значительно увеличивается.

Дифференциальные усилители как компараторы.

Благодаря высокому коэффициенту усиления и стабильным характеристикам дифференциальный усилитель является основной составной частью компаратора - схемы, которая сравнивает входные сигналы и оценивает, какой из них больше. Компараторы используют в самых различных областях: для включения освещения и отопления, для получения прямоугольных сигналов из треугольных, для сравнения уровня сигнала с пороговым значением, в усилителях класса D и при импульсно-кодовой модуляции, для переключения источников питания и т.д. Основная идея при построении компаратора заключается в том, что транзистор должен включаться или выключаться в зависимости от уровней входных сигналов. Область линейного усиления не рассматривается - работа схемы основывается на том, что один из двух входных транзисторов в любой момент находится в режиме отсечки. Типичное применение с захватом сигнала рассматривается в следующем разделе на примере схемы регулирования температуры, в которой используются резисторы, сопротивление которых зависит от температуры (термисторы).

ОУ характеризуются усилительными, входными, выходными, энергетическими, дрейфовыми, частотными и скоростными характеристиками.

Усилительные характеристики

Коэффициент усиления (K U) равен отношению приращения выходного напряжения к вызвавшему это приращение дифференциальному входному напряжению при отсутствии обратной связи (ОС). Он изменяется в пределах от 10 3 до 10 6 .

Важнейшими характеристиками ОУ являются амплитудные (передаточные) характеристики (рис. 8.4). Их представляют в виде двух кривых, относящихся соответственно к инвертирующему и неинвертирующему входам. Характеристики снимают при подаче сигнала на один из входов при нулевом сигнале на другом. Каждая из кривых состоит из горизонтального и наклонного участков.

Горизонтальные участки кривых соответствуют режиму полностью открытого (насыщенного), либо закрытого транзисторов выходного каскада. При изменении входного напряжения на этих участках выходное напряжение усилителя остается постоянным и определяется напряжениями +U вых max) -U вых max . Эти напряжения близки к напряжению источников питания.

Наклонному (линейному) участку кривых соответствует пропорциональная зависимость выходного напряжения от входного. Этот диапазон называется областью усиления. Угол наклона участка определяется коэффициентом усиления ОУ:

K U = U вых / U вх.

Большие значения коэффициента усиления ОУ позволяют при охвате таких усилителей глубокой отрицательной обратной связью получать схемы со свойствами, которые зависят только от параметров цепи отрицательной обратной связи.

Амплитудные характеристики (см. рис. 8.4), проходят через нуль. Состояние, когда U вых = 0 при U вх = 0,называется балансом ОУ. Однако для реальных ОУ условие баланса обычно не выполняется. При U вх = 0 выходное напряжение ОУ может быть больше или меньше нуля:

U вых = + U вых или U вых = — U вых).

Дрейфовые характеристики

Напряжение (U смо), при котором U вых = 0, называется входным напряжением смещения нуля (рис. 8.5). Оно определяется значением напряжения, которое необходимо подавать на вход ОУ для получения нуля на выходе ОУ. Обычно составляет не более единиц милливольт. Напряжения U смо и ∆U вых (∆U вых = U сдв — напряжение сдвига) связаны соотношением:

U смо = ∆U вых / К U .

Основной причиной появления напряжения смещения является существенный разброс параметров элементов дифференциального усилительного каскада.

Зависимость параметров ОУ от температуры вызывает температурный дрейф входного напряжения смещения. Дрейф входного напряжения смещения – это отношение изменения входного напряжения смещения к изменению окружающей температуры:

E смо = U смо / Т.

Обычно E смо составляет 1…5 мкВ / °С.

Передаточная характеристика ОУ для синфазного сигнала показана на (рис. 8.6). Из него видно, что при достаточно больших значениях U сф (соизмеримых с напряжением источника питания) коэффициент усиления синфазного сигнала (К сф) резко возрастает.

Используемый диапазон входного напряжения называется областью ослабления синфазного сигнала. Операционные усилители характеризуется коэффициентом ослабления синфазного сигнала (К осс)отношением коэффициента усиления дифференциального сигнала (К u д) к коэффициенту усиления синфазного сигнала (К u сф).

К осс = К u д / К u сф.

Коэффициент усиления синфазного сигнала определяется как отношение изменения выходного напряжения к вызвавшему его изменению синфазног
о входного сигнала). Коэффициент ослабления синфазного сигнала обычно выражается в децибелах.

Входные характеристики

Входное сопротивление, входные токи смещения, разность и дрейф входных токов смещения, а также максимальное входное дифференциальное напряжение характеризуют основные параметры входных цепей ОУ, которые зависят от схемы используемого дифференциального входного каскада.

Входной ток смещения (I см) – ток на входах усилителя. Входные токи смещения обусловлены базовыми токами входных биполярных транзисторов и токами утечки затворов для ОУ с полевыми транзисторами на входе. Другими словами, I см – это токи, потребляемые входами ОУ. Они обуславливается конечным значением входного сопротивления дифференциального каскада. Входной ток смещения (I см), приводимый в справочных данных на ОУ, определяется как средний ток смещения:

I см = (I см1 – I см2) / 2.

Входной ток сдвига – это разность токов смещения. Он появляется вследствие неточного согласования коэффициентов усиления по току входных транзисторов. Ток сдвига является переменной величиной, лежащей в диапазоне от нескольких единиц до нескольких сотен наноампер.

Вследствие наличия входного напряжения смещения и входных токов смещения схемы ОУ приходится дополнять элементами, предназначенными для начальной их балансировки. Балансировка осуществляется подачей на один из входов ОУ некоторого дополнительного напряжения и введения резисторов в его входные цепи.

Температурный дрейф входного тока коэффициент, равный отношению максимального изменения входного тока ОУ к вызвавшему его изменению окружающей температуры.

Температурный дрейф входных токов приводит к дополнительной погрешности. Температурные дрейфы важны для прецизионных усилителей, так как, в отличии от напряжения смещения и входных токов, их очень сложно скомпенсировать

Максимальным дифференциальным входным напряжением лимитируется напряжение, подаваемое между входами ОУ в схеме, для исключения повреждения транзисторов дифференциального каскада

Входное сопротивление зависит от типа входного сигнала. Различают:

· дифференциальное входное сопротивление (R вх диф) – (сопротивление между входами усилителя);

· синфазное входное сопротивление (R вх сф) – сопротивление между объединенными входными выводами и общей точкой.

Значения R вх диф лежат в интервале от нескольких десятков килоом до сотен мегаом. Входное синфазное сопротивление R вх сф на несколько порядков больше R вх диф.

Выходные характеристики

Выходными параметрами ОУ являются выходное сопротивление, а также максимальное выходное напряжение и ток.

Операционный усилитель должен обладать малым выходным сопротивлением (R вых) для обеспечения высоких значений напряжения на выходе при малых сопротивлениях нагрузки. Малое выходное сопротивление достигается применением на выходе ОУ эмиттерного повторителя. Реальное R вых составляет единицы и сотни ом.

Максимальное выходное напряжение (положительное или отрицательное) близко к напряжению питания. Максимальный выходной ток ограничивается допустимым коллекторным током выходного каскада ОУ.

Энергетические характеристики

Энергетические параметры ОУ оценивают максимальными потребляемыми токами от обоих источников питания и соответственно суммарной потребляемой мощностью .

Частотные характеристики

Усиление гармонических сигналов характеризуется частотными параметрами ОУ, а усиление импульсных сигналов – его скоростными или динамическими параметрами.

Частотная зависимость коэффициента усиления ОУ без обратной связи называется амплитудно-частотной характеристикой (АЧХ).

Частота (f 1), при которой коэффициент усиления ОУ равен единице, называется частотой единичного усиления .

Вследствие создаваемого усилителем в области высоких частот фазового сдвига выходного сигнала относительно входного фазо-частотная характеристика ОУ по инвертирующему входу приобретает дополнительный (сверх 180°) фазовый сдвиг (рис. 8.8).

Для обеспечения устойчивой работы ОУ необходимо уменьшать запаздывание по фазе, т.е. корректировать амплитудно-частотную характеристику ОУ.

Скоростные характеристики

Динамическими параметрами ОУ являются скорость нарастания выходного напряжения (скорость отклика) и время установления выходного напряжения . Они определяются по реакции ОУ на воздействие скачка напряжения на входе (рис. 8.9).

Скорость нарастания выходного напряжения – это отношение приращения ( U вых) к интервалу времени ( t), за который происходит это приращение при подаче на вход прямоугольного импульса. То есть

V U вых = U вых / t

Чем выше частота среза, тем больше скорость нарастания выходного напряжения. Типовые значенияV U вых единицы вольт на микросекунды.

Время установления выходного напряжения (t уст) – время, в течение которого U вых операционного усилителя изменяется от уровня 0,1 до уровня 0,9 установившегося значения U вых при воздействии на вход ОУ прямоугольных импульсов. Время установления обратно пропорционально частоте среза.

Появление очагов возгорания характеризуется повышением температуры окружающей среды. Поэтому в системах противопожарной сигнализации чаще всего применяются тепловые извещатели.

Они способны на начальной стадии выявлять очаги огня, что позволяет вовремя принимать меры к их устранению. Однако на рынке такие датчики представлены различными модификациями.

Чтобы выбрать подходящую для конкретного помещения стоит узнать о них как можно больше.

Конструктивные особенности устройства

Что представляет собой извещатель? Это термочувствительный элемент заключенный в пластиковом корпусе. Принцип работы самых простых моделей основан на замыкании/размыкании контактов, приводящем к формированию сигнала.

Для срабатывания прибора необходимо, чтобы температура окружающей среды поднялась выше порогового значения устройства.

При функционировании такие тепловые извещатели не потребляют ток. Они называются пассивными. В качестве термоэлемента в них используется определенный сплав. Ранее эти датчики были одноразового действия и восстановлению не подлежали, но сегодня появились многоразовые модели. В них под воздействием температуры биметаллический элемент меняя свою форму воздействует на контакт.

Есть образцы магнито-управляемые. Расположенный в них постоянный магнит изменяет свои свойства в результате нагревания, что и приводит к срабатыванию прибора.

Подбирая тепловой извещатель для помещения необходимо, чтобы пороговое значение температуры для них было выше, чем среднее по зданию не менее чем на 10° С. Это позволяет избежать ложных срабатываний.

Виды приборов и их особенности

Каждый прибор рассчитан на определенную контролируемую зону. По характеру ее обнаружения на:

  • Точечные
  • Линейные

Точечные извещатели пожарные тепловые в свою очередь выпускаются двух видов:

  • Максимальные
  • Дифференциальные

Работа первых основана на изменении состояния термоэлемента при повышении температуры до порогового значения. Стоит отметить, что для срабатывания необходимо, чтобы до указанного в технических характеристиках значения нагрелся сам извещатель. А для этого потребуется определенное время.

Это является очевидным недостатком прибора, так как не позволяет обнаруживать пожар на начальной стадии. Устранить его можно увеличив количество датчиков, расположенных в одном помещении, а также используя другие их типы.

Дифференциальные тепловые извещатели рассчитаны на отслеживание скорости повышения температуры. Это позволило снизить инерционность прибора. В конструкцию таких датчиков включены электронные элементы, что отразилось на стоимости.

На практике, чаще всего, эти два типа применяют в комплексе. Такой максимально-дифференциальный извещатель пожарный срабатывает не только на скорость повышения температуры, но и на ее пороговый показатель.

Линейные приборы или термокабели – это витая пара, где каждый провод покрыт термо резистивным материалом. Он при повышении температуры теряет свои свойства, что приводит к замыканию в цепи и формировании сигнала о пожаре.

Термокабель подключается вместо шлейфа системы. Но у него есть один недостаток – замыкание может быть вызвано не только возгоранием.

Для устранения таких моментов линейные датчики подключают через интерфейсные модули, обеспечивающие его связь с прибором сигнализации. Очень часть их применяют в технологических шахтах лифтов и других аналогичных сооружениях.

Производители – выбираем лучшую модель

Наибольшее распространение на отечественном рынке противопожарного оборудования находят тепловые датчики российских компаний. Это обусловлено как особенностями систем сигнализации, нормативными требованиями, так и умеренными ценами на них.

К наиболее популярным относятся извещатели тепловые пожарной сигнализации:

  • Аврора ТН (ИП 101-78-А1) – Аргусспектр
  • ИП 101-3А-A3R – Сибирский Арсенал

Извещатель Аврора относится к максимально-дифференциальным неадресным. Его применяют для обнаружения очагов возгорания в помещении и передачи сигнала ПКП.

Смотрим видео о продукции:

К достоинствам данной модели относятся:

  1. Высокая чувствительность
  2. Надежность
  3. Использование микропроцессора в составе прибора
  4. Простота в обслуживании

Его стоимость составляет более 400 рублей, но она полностью соответствует качеству прибора.

Извещатели тепловые взрывозащищенные ИП 101-3А-A3R относятся также к максимально-дифференциальным. Они предназначены для применения в отапливаемых помещениях и могут работать со шлейфами постоянного и переменного тока.

К достоинствам данной модели можно отнести:

  • Электронную схему управления
  • Наличие светодиодного индикатора, позволяющего контролировать работу устройства
  • Современный дизайн

Стоимость данной модели значительно ниже и составляет 126 рублей, что делает их доступными для широкого круга пользователей.

Смотрим видео о продукции ИП 101-7 взрывозащищенные:

Есть еще много различных типов. Это извещатель тепловой взрывозащищенный и многие другие. Какой из них выбрать для конкретного помещения зависит от различных факторов, которые будут рассмотрены далее.

На что ориентироваться при выборе?

Каждый тепловой датчик обладает определенными классификационными признаками. Обычно они отражаются в технической документации. Перечислим те из них, на которые следует обращать внимание:

  1. Температура срабатывания
  2. Принцип действия
  3. Конструктивные особенности
  4. Инерционность
  5. Вид зоны контроля

Например, для помещений, имеющих большие площади рекомендуется установка тепловых пожарных извещателейс линейной зоной обнаружения. Выбирая прибор обязательно обращают внимание на температуру срабатывания, она не должна отличаться от средней более чем на 20° С. В зоне контроля недопустимы резкие перепады, они могут привести к ложному срабатыванию

Везде ли возможно применение датчиков?

Существует перечень документов, регламентирующих использование противопожарного оборудования. В них указано, что тепловые извещатели допустимы к применению на большинстве производственных и жилых объектов. Но в то же время есть перечень помещений, где их работа нецелесообразна:

  • вычислительные центры
  • комнаты с подвесными потолками

Максимально дифференциальный МДПИ-028

Максимально дифференциальный ДМД-70

Максимально дифференциальный ДМД-70-С

Автоматический биметаллический максимально-дифференциальный пожарный извещатель МДПИ-028 выполнен в водозащитном исполнении и предназначен для применения на судах. Конструктивно извещатель построен на двух биметаллических элементах, которые деформируются при повышении окружающей температуры и своими незакрепленными концами воздействуют на контакты. Каждый биметаллический элемент расположен

Автоматический биметаллический максимально-дифференциальный извещатель МДПИ-028 227 ел.

Тепловой максимально-дифференциальный МДПИ-028, чувствительным элементом явля-ются две бимегалляческие спирали. Срабатывает при темпера-type + 70° С (+90° С) .Контролируемая площадь - от 20 до 30 м2. Температура окружающей среды должиа быть от -40 до -f-50°C. Относительная влажность помещений не должна превышать 98%. Работает со станцией судовой пожарной сигнализации ТОЛ-10/50-С.

Извещатель МДПИ-028 (максимально-дифференциальный пожарный извещатель) в водозащитном исполнении предназначен для применения в помещениях с температурой воздуха-40... + 50° С и относительной влажностью до 98%. Извещагель приспособлен для работы в условиях вибрации.

На смену морально и технически устаревшим пожарным изве-щателям АТИМ, АТП, ДТЛ, ДИ-1, КИ-1, РИД-1, ИДФ-1, ИДФ-1М, ПОСТ-1 и приемно-контрольного оборудования СКПУ-1, СДПУ-1, ППКУ-1М, ТОЛ-10/100, РУОП-1 были разработаны и освоены новые модели современных пожарных извещателей и приемно-контрольных приборов со значительно лучшими эксплуатационными показателями долговечности, надежности и экономичности, выполненные на современной элементной базе широкого применения. К ним относились: радиоизотопный дымовой пожарный извещатель РИД-6М, фотоэлектрический дымовой извещатель ДИП-1, ДИП-2 и ДИП-3, световой пожарный извещатель ультрафиолетового излучения пламени ИП329-2 «Аметист», взрывозащищенный тепловой пожарный извещатель ИП-103, тепловой магнитоконтактный пожарный извещатель многократного действия ИП105-2/1 (ИТМ), ручной пожарный извещатель ИПР, максимально-дифференциальный извещатель ИП101-2, а также приемно-контрольные приборы ППС-3, ППК-2, РУГТИ-1, ППКУ-1М-01 и «Сигнал-42». Для защиты взрывопожароопасных производств разработан и передан в промышленное производство новый искро-безопасный приемно-контрольный прибор «Сигнал-44», рассчитанный на подключение к искробезопасному шлейфу сигнализации пожарных

Максимально-дифференциальный тепловой пожарный извещатель - тепловой пожарный извещатель, совмещающий функции максимального и дифференциального тепловых пожарных извещателей.

5 Извещатель тепловой ИП 129-1 Аналоговый максимально-дифференциальный тепловой извещатель
выми. Наиболее распространенные тепловые извещатели по принципу действия разделяются на максимальные, дифференциальные и максимально-дифференциальные. Первые срабатывают при достижении определенной температуры, вторые - при определенной скорости нарастания температуры, третьи - от любого превалирующего изменения температуры. По конструктивному исполнению тепловые извещатели бывают пассивные, в которых под воздействием температуры чувствительный элемент меняет свои свойства (ДТЛ, ИП-104-1 - максимального действия, основанные на размыкании пружинящих контактов, соединенных лег-коплаэким припоем: МДПТ-028 - максимально-дифференциальный на биметаллическом эффекте, приводящем к деформации пластин, размыкающих контакты; ИП-105-2/1 - на принципе изменения магнитной индукции под действием тепла; ДПС-38 -дифференциальный на применении термопарной термобатареи).

Тепловые извещатели по принципу действия разделяются на максимальные, дифференциальные и максимально-дифференциальные. Первые срабатывают при достижении определенной температуры, вторые - при определенной скорости нарастания температуры, а третьи - от любого значительного изменения температуры. В качестве чувствительных элементов применяют легкоплавкие замки, биметаллические пластины, трубки, заполненные легко расширяющейся жидкостью, термопары и т. д. Тепловые пожарные извещатели устанавливают под потолком в таком положении, чтобы тепловой поток, обтекая чувствительный элемент извещателя, нагревал его. Тепловые пожарные извещатели не обладают высокой чувствительностью, поэтому обычно не дают ложных сигналов срабатывания в случае увеличения температуры в помещении при включении отопления, выполнения технологических операций.

Тепловые или термоизвещатели подразделяются на максимальные, дифференциальные и максимально-дифференциальные.

Максимально-дифференциальные извещатели являются комбинированными, т. е. работающими одновременно и при определенной скорости нарастания температур и при достижении критических температур воздуха в помещении.

Тепловые извещатели по принципу действия подразделяются на максимальные, дифференциальные и максимально-дифференциальные.

Дифференциальные термоизвещатели срабатывают при определенной скорости нарастания температуры окружающей среды, которую принимают в пределах 5-МО°С в 1 мин. Максимально-дифференциальные извещатели объединяют свойства извещателей максимального и дифференциального типов.

Тепловые извещатели по принципу действия подразделяются на максимальные, дифференциальные и максимально-дифференциальные.

Тепловые автоматические пожарные извещатели разделяют по принципу действия на максимальные, дифференциальные и максимально-дифференциальные. Извещатели максимального принципа действия срабатывают при достижении определенного значения температуры, дифференциального - при определенной скорости нарастания градиента температуры, максимально-дифференциаль-

Тепловые максимально-дифференциальные извещатели не следует применять в следующих случаях: скорость изменения температуры окружающего воздуха больше градиента температуры срабатывания извещателя (цехи, закаливания, котельные и т. д.); имеется сырая пыль (концентрация пыли больше допустимой по санитарным нормам).

Пожарные извещатели дымовые 215 дымовые оптические 217 линейно-объемные 221 максимально-дифференциальные

Для помехозащищенности комплементарно передаваемые сигналы должны быть хорошо сбалансированы и обладать одинаковым импедансом

Дифференциальная передача подразумевает наличие двух комплементарных сигналов с равной амплитудой и фазовым сдвигом 180°. Один из сигналов называется позитивным (прямым, неинверсным), второй - негативным (инверсным). Дифференциальная передача широко используется в электронных схемах и существенна для увеличения скорости передачи данных. Высокоскоростные тактовые сигналы компьютерных материнских плат и серверов передаются по дифференциальным линиям. Многочисленные устройства, такие как, принтеры, коммутаторы, маршрутизаторы и сигнал-процессоры используют технологию низкоуровневой дифференциальной передачи сигналов LVDS (Low Voltage Differential Signaling).

По сравнению с однопроводной для реализации дифференциальной передачи требуется большее количество передатчиков (драйверов, трансмиттеров) и приемников (ресиверов), а также удвоенное число выводов элементов и проводников. С другой стороны, использование дифференциальной передачи дает несколько привлекательных преимуществ:

Большая временная точность,
- большая возможная скорость передачи,
- меньшая восприимчивость к электромагнитным помехам,
- меньший шум, связанный с перекрестными помехами.

При разводке дифференциальных проводников важно, чтобы обе дифференциальные трассы обладали одним и тем же импедансом, были одинаковой длины, а расстояние между их краями было постоянным.

Используя пример, рассмотрим несколько важных концепций дифференциальной разводки. На рисунке 1 показана дифференциальная шина материнской платы, проложенная между выводами специализированной микросхемы (ASIC) и разъемом для подключения дочерней платы с микросхемами памяти. Проводник прямого сигнала выделен зеленым цветом, а инверсного - красным. Каждый проводник на своем протяжении имеет два переходных отверстия и серпантиновый участок.

Рис. 1. Дифференциальная пара на материнской печатной плате

Дифференциальная разводка на этом рисунке выполена с учетом нескольких правил:

Выводы компонентов, использующихся для передачи или приема дифференциальных сигналов, располагаются близко друг от друга;
- на каждом, отдельно взятом слое, располагаются отрезки шин одинаковой длины, а расстояние между шинами сохраняется на разных слоях одинаковым;
- при смене слоя зазор между площадками переходных отверстий делается минимальным (не превышающим расстояния между шинами, если это выполнимо);
- серпантиновые участки двух шин располагаются в одной области так, чтобы у позитивного и негативного сигналов были одинаковые задержки распространения на протяжении всей длины цепи.

Скругление углов и одинаковая длина дифференциальных проводников требует особой внимательности.

Кроме проводников печатной платы, в корпусе интегральной схемы располагаются шины, соединяющие каждый вывод корпуса с выводом кристалла ИС. Различная длина этих шин в некоторых случаях может вносить свои коррективы.

В качестве численного примера рассмотрим дифференциальные шины со следующими длинами сегментов:

для прямого сигнала

Длина сегмента от вывода разъема до первого переходного отверстия = 3022.93 мил (76,78 мм),

Длина сегмента между переходными отверстиями = 747.97 мил (19,0 мм),

Общая длина цепи прямого сигнала = 3,798.70 мил (96,49 мм);

Для инверсного сигнала

Длина сегмента от вывода разъема до первого переходного отверстия = 3025.50 мил (76,78 мм),

Длина сегмента между переходными отверстиями = 817.87 мил (19,0 мм),

Длина сегмента от второго переходного отверстия до вывода ИС = 27.8 мил (0,71 мм),

Общая длина цепи прямого сигнала = 3,871.17 мил (98,33 мм).

Таким образом, разница в длинах проводников печатной платы составляет 72.47 мил (1,84 мм).

Некоторую часть полученной разницы можно скомпенсировать, учитывая различную длину шин внутри корпуса ИС. При этом разница суммарных длин трасс становится в пределах специфицированного допуска.

Рисунок 2 показывает, что общая длина шины должна быть продумана с точки зрения уменьшения разницы в длинах дифференциальных проводников.

Рис. 2. Сумма (L0 + L1) должна равняться сумме (L2 + L3) в пределах допускаемой погрешности

Повторяя снова, желательно сохранять постоянным расстояние между краями проводников на всем их протяжении. Исследование дифференциальной пары показывают, что поблизости от выводов разъема шины теряют параллельность друг относительно друга. Рисунок 3 иллюстрирует схему разводки с минимизацией этого недостатка при сохранении параллельности на большой длине (образующийся при этом острый угол проводника инверсного сигнала может приводить к потере его целостности с вытекающими отсюда последствиями - примечание переводчика). Такая схема может применяться в случаях, когда дифференциальные сигналы должны иметь сильную связь или при передаче высокоскоростных сигналов.

Рис. 3. Параллельная разводка проводников

Когда интервал между двумя трассами относительно велик (связь между проводником и полигоном превышает взаимосвязь между проводниками), то пара становится слабосвязанной. И, наоборот, когда две трассы расположены достаточно близко друг от друга (взаимосвязь между ними больше связи между отдельным проводником и полигоном), то это означает, что проводники пары сильно связаны. Сильная связь обычно не является необходимой для достижения начальных преимуществ дифференциальной структуры. Тем не менее, для достижения хорошей помехозащищенности сильная связь желательна для комплементарно передающихся, хорошо сбалансированных сигналов, обладающих симметричным импедансом относительно опорного напряжения.

Концепция дифференциальной разводки в этом случает предполагает компланарные пары (т.е. располагающиеся в одном слое), имеющие связь по краям проводников. Дифференциальные сигналы могут также разводиться и другим способом, при котором проводники прямого и инверсного сигналов располагаются на разных (соседних!!!) слоях платы. Однако, такой способ может вызвать проблемы с постоянством импеданса. На рисунке 4 приведены оба эти варианта, а также некоторые критичные размеры, такие как ширина (W), расстояние между краями (S), толщина проводников (T) и дистанция между проводником и полигоном (H). Эти параметры, устанавливающие геометрию поперечного сечения дифференциальной пары, часто используются (наряду со свойствами материала проводников и диэлектрика подложки) для определения значений импедансов (для нерегулярного, равновесного, синфазного и противо-фазного режимов) и для вычисления величины связи между проводниками пары.

Рис. 4. Геометрические размеры сечения дифференциальной пары

Abbas Riazi
DIFFERENTIAL SIGNALS ROUTING REQUIREMENTS
Printed Circuit Design & Manufacture
February-March 2004
Благодарим сайт elart.narod.ru за предоставленный перевод