Döşeme levhalarının yangına dayanıklılığı. Betonarme yapıların yangına dayanıklılığı

Bina yapılarının yangına dayanıklılık sınırlarının belirlenmesi

Betonarme yapıların yangına dayanıklılık sınırının belirlenmesi

için ilk veriler betonarme döşeme tavanlar tablo 1.2.1.1'de gösterilmektedir

Beton türü - hafif beton yoğunluk c = 1600 kg/m3, kaba genişletilmiş kil agregasıyla birlikte; Plakalar çok oyuklu, yuvarlak boşluklu, boşluk sayısı 6 adettir, plakalar her iki taraftan da desteklenmiştir.

1) Etkili kalınlık içi boş çekirdek levha SNiP II-2-80 (Yangına dayanıklılık) Kılavuzunun 2.27. maddesine göre ısı yalıtım kapasitesine dayalı olarak yangına dayanıklılık sınırını değerlendirmek için tef:

2) Tabloya göre belirleyin. 8 Etkin kalınlığı 140 mm olan hafif betondan yapılmış bir levha için ısı yalıtım kapasitesi kaybına dayalı bir levhanın yangına dayanıklılık sınırı:

Plakanın yangına dayanım sınırı 180 dk.

3) Döşemenin ısıtılmış yüzeyinden çubuk takviyesinin eksenine olan mesafeyi belirleyin:

4) Tablo 1.2.1.2'yi (Kılavuzdaki Tablo 8) kullanarak, iki taraftan desteklendiğinde hafif beton için a = 40 mm'deki yük taşıma kapasitesi kaybına dayalı olarak döşemenin yangına dayanıklılık sınırını belirleriz.

Tablo 1.2.1.2

Betonarme döşemelerin yangına dayanıklılık sınırları


Gerekli yangına dayanıklılık sınırı 2 saat veya 120 dakikadır.

5) Kılavuzun 2.27 numaralı maddesine göre, içi boş çekirdek döşemelerin yangına dayanıklılık sınırını belirlemek için 0,9'luk bir azaltma faktörü uygulanır:

6) Döşemelerdeki toplam yükü kalıcı ve geçici yüklerin toplamı olarak belirliyoruz:

7) Yükün uzun etkili kısmının tam yüke oranını belirleyin:

8) Kılavuzun 2.20 maddesine göre yük için düzeltme faktörü:

9) Kılavuzun 2.18 (bölüm 1 b) maddesine göre donatı katsayısını kabul ediyoruz.

10) Yük ve donatı katsayılarını dikkate alarak levhanın yangına dayanıklılık sınırını belirliyoruz:

Yük taşıma kapasitesi açısından döşemenin yangına dayanıklılık sınırı:

Hesaplamalar sırasında elde edilen sonuçlara göre betonarme bir döşemenin yangına dayanıklılık sınırının yük taşıma kapasitesi açısından 139 dakika, ısı yalıtım kapasitesi açısından ise 180 dakika olduğunu tespit ettik. En düşük yangına dayanıklılık sınırını almak gerekir.

Sonuç: REI 139 betonarme döşemenin yangına dayanıklılık sınırı.

Betonarme kolonların yangına dayanıklılık sınırlarının belirlenmesi

Beton türü - karbonat kayalarından (kireçtaşı) oluşan iri agregalı, c = 2350 kg/m3 yoğunluğa sahip ağır beton;

Tablo 1.2.2.1 (Kılavuzdaki Tablo 2), betonarme kolonların gerçek yangına dayanıklılık sınırlarının (POf) değerlerini göstermektedir. farklı özellikler. Bu durumda POf, koruyucu beton tabakasının kalınlığı ile değil, yapı yüzeyinden çalışma takviye çubuğunun () eksenine olan mesafeye göre belirlenir; bu, koruyucu tabakanın kalınlığına ek olarak , ayrıca çalışma takviye çubuğunun çapının yarısını da içerir.

1) Aşağıdaki formülü kullanarak kolonun ısıtılmış yüzeyinden çubuk takviyesinin eksenine olan mesafeyi belirleyin:

2) Karbonat dolgulu betondan yapılmış yapılar için Kılavuzun 2.15 maddesine göre, boyut enine kesit aynı yangına dayanım sınırı ile %10 oranında azalmasına izin verilir. Daha sonra aşağıdaki formülü kullanarak sütunun genişliğini belirleriz:

3) Tablo 1.2.2.2'yi (Kılavuzdaki Tablo 2) kullanarak, hafif betondan yapılmış bir kolonun yangına dayanıklılık sınırını şu parametrelerle belirleriz: kolon her taraftan ısıtıldığında b = 444 mm, a = 37 mm.

Tablo 1.2.2.2

Betonarme kolonların yangına dayanıklılık sınırları


Gerekli yangına dayanıklılık sınırı 1,5 saat ile 3 saat arasındadır. Yangına dayanıklılık sınırını belirlemek için doğrusal enterpolasyon yöntemini kullanırız. Veriler tablo 1.2.2.3'te verilmiştir.

Tablo 2.18

Hafif beton yoğunluğu? = 1600 kg/m3 iri genleştirilmiş kil agregalı, 6 adet yuvarlak boşluklu döşemeler, döşemeler her iki taraftan serbestçe mesnetlidir.

1. Kılavuzun 2.27 numaralı maddesine göre ısı yalıtım kabiliyetine dayalı yangına dayanıklılık sınırını değerlendirmek için içi boş çekirdek levha teff'in etkin kalınlığını belirleyelim:

levhanın kalınlığı nerede, mm;

  • - döşeme genişliği, mm;
  • - boşluk sayısı, adet;
  • - boşlukların çapı, mm.
  • 2. Tabloya göre belirleyin. 8 Etkin kalınlığı 140 mm olan ağır beton parçadan yapılmış bir levha için ısı yalıtım kapasitesi kaybına dayalı bir levhanın yangına dayanıklılık sınırına ilişkin kılavuz:

Isı yalıtım yeteneğinin kaybına bağlı olarak levhanın yangına dayanıklılık sınırı

3. Döşemenin ısıtılmış yüzeyinden çubuk takviyesinin eksenine olan mesafeyi belirleyin:

koruyucu beton tabakasının kalınlığı nerede, mm;

  • - çalışma bağlantı parçalarının çapı, mm.
  • 4. Tabloya göre. 8 Kılavuzlar Bir levhanın yangına dayanıklılık sınırını, ağır beton için ve iki taraftan desteklendiğinde a = 24 mm'lik yük taşıma kapasitesi kaybına göre belirleriz.

Gerekli yangına dayanıklılık sınırı 1 saat ile 1,5 saat arasındadır, bunu doğrusal enterpolasyonla belirleriz:

Döşemenin düzeltme faktörleri dikkate alınmadan yangına dayanıklılık sınırı 1,25 saattir.

  • 5. Kılavuzun 2.27 numaralı maddesine göre, içi boş çekirdek döşemelerin yangına dayanıklılık sınırını belirlemek için 0,9'luk bir azaltma faktörü uygulanır:
  • 6. Döşeme üzerindeki toplam yükü kalıcı ve geçici yüklerin toplamı olarak belirliyoruz:
  • 7. Yükün uzun etkili kısmının tam yüke oranını belirleyin:

8. Kılavuzun 2.20 maddesine göre yük için düzeltme faktörü:

  • 9. Madde 2.18 (bölüm 1 a) Avantajlar'a göre katsayıyı kabul ediyor muyuz? A-VI bağlantı parçaları için:
  • 10. Yük ve donatı katsayılarını dikkate alarak levhanın yangına dayanıklılık sınırını belirliyoruz:

Levhanın yük taşıma kapasitesi açısından yangına dayanıklılık sınırı R 98'dir.

Döşemenin yangına dayanıklılık sınırı iki değerden küçük olanı olarak alınır: ısı yalıtım kapasitesi kaybı (180 dakika) ve yük taşıma kapasitesi kaybı (98 dakika).

Sonuç: Betonarme döşemenin yangına dayanıklılık sınırı REI 98'dir

Yukarıda bahsedildiği gibi, betonarme yapıların bükülmesinde yangına dayanıklılık sınırı, gerilim bölgesinde bulunan çalışma takviyesinin kritik bir sıcaklığa ısıtılması nedeniyle ortaya çıkabilir.

Bu bağlamda, içi boş bir döşeme plakasının yangına dayanıklılığının hesaplanması, gerilmiş çalışma takviyesinin kritik sıcaklığa ısıtılma süresine göre belirlenecektir.

Döşemenin kesiti Şekil 3.8'de gösterilmektedir.

B P B P B P B P B P

H H 0

A S

Şekil 3.8. İçi boş bir döşeme plakasının tasarım kesiti

Döşemeyi hesaplamak için kesiti T kesitine indirgenir (Şekil 3.9).

B F

X tem ≤h' F

H F

h h 0

X tem >h' F

A S

a∑b R

Şekil 3.9. Yangına dayanıklılığını hesaplamak için içi boş çekirdekli bir levhanın T kesiti

Alt sıra

düz esnek boşluklu betonarme elemanların yangına dayanıklılık sınırının hesaplanması


3. Eğer öyleyse  S , tem formülle belirlenir

Bunun yerine nerede B kullanılmış ;

Eğer
ise aşağıdaki formül kullanılarak yeniden hesaplanması gerekir:

    3.1.5'e göre belirlenir T S , cr(Kritik sıcaklık).

    Gauss hata fonksiyonu aşağıdaki formül kullanılarak hesaplanır:

    3.2.7'ye göre Gauss fonksiyonunun argümanı bulunur.

    Yangına dayanıklılık sınırı P f aşağıdaki formül kullanılarak hesaplanır:

Örnek No. 5.

Verildi. İki taraftan serbestçe desteklenen içi boş çekirdekli döşeme levhası. Bölüm boyutları: B=1200 mm, çalışma açıklığı uzunluğu ben= 6 m, kesit yüksekliği H= 220 mm, koruyucu tabaka kalınlığı A ben = 20 mm, çekme takviyesi sınıfı A-III, 4 çubuk Ø14 mm; Ezilmiş kireçtaşı üzerinde B20 sınıfı ağır beton, betonun ağırlık nem içeriği w= %2, betonun ortalama kuru yoğunluğu ρ 0'lar= 2300 kg/m3, boşluk çapı D N = 5,5 kN/m.

Tanımlamak döşemenin gerçek yangına dayanıklılık sınırı.

Çözüm:


B20 sınıfı beton için R milyar= 15 MPa (madde 3.2.1.)

R bu= Rbn /0,83 = 15/0,83 = 18,07 MPa

A-III sınıfı takviye için R sn = 390 MPa (madde 3.1.2.)

R su= R sn /0,9 = 390/0,9 = 433,3 MPa

A S= 615 mm2 = 61510 -6 m2




    Betonun termofiziksel özellikleri:

λ tem = 1,14 – 0,00055450 = 0,89 W/(m˚С)

tem = 710 + 0,84450 = 1090 J/(kg·˚С) ile

k= 37.2 s.3.2.8.

k 1 = 0,5 s.3.2.9. .

    Gerçek yangına dayanıklılık sınırı belirlenir:

Döşemenin boşluğu dikkate alınarak, gerçek yangına dayanıklılık sınırı 0,9 faktörüyle çarpılmalıdır (madde 2.27.).

Edebiyat

    Shelegov V.G., Kuznetsov N.A. “Binalar, yapılar ve yangın durumunda stabiliteleri.” Disiplini incelemek için ders kitabı – Irkutsk: Rusya İçişleri Bakanlığı VSI, 2002. – 191 s.

    Shelegov V.G., Kuznetsov N.A. Bina inşaatı. “Binalar, yapılar ve yangın durumunda stabiliteleri” disiplini için referans kitabı. – Irkutsk: Rusya İçişleri Bakanlığı VSI, 2001. – 73 s.

    Mosalkov I.L. ve diğerleri Bina yapılarının yangına dayanıklılığı: M.: ZAO "Spetstekhnika", 2001. - 496 s., illus.

    Yakovlev A.I. Yangına dayanıklılık hesabı bina yapıları. – M.: Stroyizdat, 1988.- 143 s., hasta.

    Shelegov V.G., Chernov Yu.L. “Binalar, yapılar ve yangın durumunda stabiliteleri.” Bir kurs projesini tamamlama kılavuzu. – Irkutsk: Rusya İçişleri Bakanlığı VSI, 2002. – 36 s.

    Yapıların yangına dayanıklılık sınırlarının, yapılar boyunca yangının yayılmasının sınırlarının ve malzemelerin yanıcılık gruplarının (SNiP II-2-80'e göre) belirlenmesi için bir kılavuz, TsNIISK im. Kucherenko. – M.: Stroyizdat, 1985. – 56 s.

    GOST 27772-88: Çelik yapılar inşa etmek için haddelenmiş ürünler. Yaygındır teknik özellikler/ Gosstroy SSCB. – M., 1989

    SNiP 2.01.07-85*. Yükler ve etkiler/Gosstroy SSCB. – M.: CITP Gosstroy SSCB, 1987. – 36 s.

    GOST 30247.0 – 94. Bina yapıları. Yangına dayanıklılık test yöntemleri. Genel Gereksinimler.

    SNiP 2.03.01-84*. Beton ve betonarme yapılar / Rusya İnşaat Bakanlığı. – M.: GP TsPP, 1995. – 80 s.

1YÖNETİM – kıyıda özel olarak inşa edilmiş eğimli temele sahip bir yapı ( kızak), geminin gövdesinin döşendiği ve inşa edildiği yer.

2 Üst geçit – kara yollarının (veya kara yolunun) kesiştiği yerde bir köprü. Onlar boyunca hareket farklı seviyelerde sağlanır.

3AZALTILDI – Bir yolun kesiştiği noktada diğerinin üzerinden geçmesine, gemilerin yanaşmasına ve genel olarak belli bir yükseklikte yol oluşturmaya yarayan köprü şeklindeki yapı.

4 DEPOLAMA TANKI - sıvılar ve gazlar için konteyner.

5 GAZ TUTUCU- Gazın alınması, depolanması ve dağıtılmasına yönelik bir tesis gaz boru hattı ağına.

6yüksek fırın- demir cevherinden dökme demirin eritilmesi için bir şaft fırını.

7Kritik sıcaklık– standart metal direncinin (Run) yapıdaki harici yükten dolayı standart voltajn değerine düştüğü sıcaklık; taşıma kapasitesi kaybının meydana geldiği yer.

8 Dübel - ahşap yapıların parçalarını sabitlemek için kullanılan ahşap veya metal bir çubuk.

Betonarme yapılar yanmazlıkları ve nispeten düşük ısı iletkenlikleri nedeniyle agresif yangın faktörlerinin etkilerine oldukça iyi direnç gösterirler. Ancak ateşe sonsuza kadar dayanamazlar. Modern betonarme yapılar, kural olarak, binanın diğer unsurları ile yekpare bir bağlantısı olmayan ince duvarlardan yapılmıştır, bu da yangın koşullarında çalışma işlevlerini yerine getirme yeteneklerini 1 saate ve bazen daha azına sınırlar. Nemlendirilmiş betonarme yapıların yangına dayanıklılık sınırı daha da düşüktür. Bir yapının nem içeriğinin %3,5'e yükselmesi yangına dayanıklılık sınırını arttırırsa, kısa süreli bir yangın sırasında yoğunluğu 1200 kg/m3'ün üzerinde olan betonun nem içeriğinin daha da artması patlamaya neden olabilir. Betonun ve yapının hızla tahrip edilmesi.

Betonarme bir yapının yangına dayanıklılık sınırı, kesitinin boyutlarına, koruyucu tabakanın kalınlığına, donatı tipine, miktarına ve çapına, beton sınıfına ve agrega tipine, yapı üzerindeki yüke bağlıdır. ve destek planı.

Yangının karşısındaki yüzeyin (zeminler, duvarlar, bölmeler) 140°C ısıtılmasıyla kapatılan yapıların yangına dayanıklılık sınırı, betonun kalınlığına, betonun cinsine ve nemine bağlıdır. Betonun kalınlığı arttıkça ve yoğunluğu azaldıkça yangına dayanıklılık sınırı artar.

Yük taşıma kapasitesi kaybına dayalı yangına dayanıklılık sınırı, yangının tipine ve tipine bağlıdır. statik şema yapıyı destekliyor. Tek açıklıklı basit destekli bükme elemanları (kiriş levhaları, paneller ve zemin döşemeleri, kirişler, kirişler), boylamasına alt çalışma takviyesinin maksimum kritik sıcaklığa kadar ısıtılması sonucu bir yangın durumunda tahrip olur. Bu yapıların yangına dayanıklılık sınırı, alt çalışma donatısının koruyucu tabakasının kalınlığına, donatı sınıfına, çalışma yüküne ve betonun ısıl iletkenliğine bağlıdır. Kirişler ve aşıklar için yangına dayanıklılık sınırı aynı zamanda bölümün genişliğine de bağlıdır.

Aynı tasarım parametreleriyle, kirişlerin yangına dayanıklılık limiti döşemelerinkinden daha azdır, çünkü yangın durumunda kirişler üç taraftan (alttan ve iki yan yüzden) ısıtılır ve döşemeler yalnızca alttan ısıtılır. alt yüzey.

Yangına dayanıklılık açısından en iyi takviye çeliği A-III sınıfı 25G2S çeliktir. Bu çeliğin standart yük ile yüklenen bir yapının yangına dayanıklılık sınırına ulaştığı andaki kritik sıcaklığı 570°C'dir.

Fabrikada üretilen, 20 mm'lik koruyucu tabakaya sahip ağır betondan ve A-IV sınıfı çelikten yapılmış çubuk takviyeli büyük boşluklu öngerilmeli tabliyeler, bu tabliyelerin konut binalarında kullanılmasına izin veren 1 saatlik yangına dayanıklılık sınırına sahiptir.

Sıradan betonarme malzemeden yapılmış katı kesitli levhalar ve paneller koruyucu katman 10 mm'nin yangına dayanıklılık sınırları vardır: çelik takviye A-I sınıfları ve A-II - 0,75 saat; A-III (sınıf 25G2S) - 1 çay kaşığı.

Bazı durumlarda, ince duvarlı esnek yapılar (desteklerde dikey çerçeveler bulunmayan, kesit genişliği 160 mm veya daha az olan içi boş ve nervürlü paneller ve döşemeler, çapraz çubuklar ve kirişler) eğik bölüm boyunca bir yangın durumunda vaktinden önce çökebilir. desteklerde. Bu yapıların destek alanlarına açıklığın en az 1/4'ü uzunluğunda dikey çerçeveler monte edilerek bu tür tahribat önlenir.

Kontur boyunca desteklenen levhaların yangına dayanıklılık sınırı, basit bükülebilir elemanlardan önemli ölçüde daha yüksektir. Bu levhalar iki yönde çalışma donatısıyla güçlendirilir, dolayısıyla yangına dayanıklılıkları ayrıca kısa ve uzun açıklıklardaki donatı oranına da bağlıdır. Bu oran bire eşit olan kare döşemeler için yangına dayanıklılık sınırının başlangıcında donatının kritik sıcaklığı 800°C'dir.

Döşemenin en-boy oranı arttıkça kritik sıcaklık düşer ve dolayısıyla yangına dayanıklılık sınırı da düşer. En boy oranlarının dörtten fazla olması durumunda yangına dayanıklılık sınırı, iki taraftan desteklenen döşemelerin yangına dayanıklılık sınırına neredeyse eşittir.

Statik olarak belirsiz kirişler ve kiriş döşemeleri ısıtıldıklarında mesnet ve açıklık bölümlerinin tahrip olması sonucu yük taşıma kapasitelerini kaybederler. Alt boyuna donatı mukavemetinin azalması sonucu açıklıktaki kesitler tahrip olurken, yüksek sıcaklıklara kadar ısıtılan alt sıkıştırılmış bölgedeki beton mukavemetinin kaybı sonucu destek kısımları tahrip olur. Bu bölgenin ısınma hızı kesit boyutlarına bağlıdır, dolayısıyla statik olarak belirsiz kiriş döşemelerinin yangına dayanıklılığı kalınlıklarına, kirişlerin ise kesit genişliğine ve yüksekliğine bağlıdır. Şu tarihte: büyük boyutlar kesitte, söz konusu yapıların yangına dayanıklılık sınırı, statik olarak belirlenen yapılardan (tek açıklıklı basit mesnetli kirişler ve döşemeler) ve bazı durumlarda (kalın kiriş döşemeleri için, güçlü üst destek donatısına sahip kirişler için) önemli ölçüde daha yüksektir. ) pratikte boyuna alt takviyedeki koruyucu tabakanın kalınlığına bağlı değildir.

Sütunlar. Kolonların yangına dayanıklılık limiti, yük uygulama şekline (merkezi, eksantrik), kesit boyutlarına, donatı yüzdesine, kaba beton agrega tipine ve boyuna donatının koruyucu tabakasının kalınlığına bağlıdır.

Kolonların ısıtıldığında tahrip olması, donatı ve betonun mukavemetinin azalması sonucu meydana gelir. Eksantrik yük uygulaması kolonların yangın dayanımını azaltır. Yük büyük bir eksantriklik ile uygulanırsa, kolonun yangına dayanıklılığı, çekme takviyesinin koruyucu tabakasının kalınlığına bağlı olacaktır, yani. Bu tür sütunların ısıtıldığında çalışmasının niteliği, basit kirişlerle aynıdır. Küçük bir eksantrikliğe sahip bir kolonun yangına dayanıklılığı, merkezi olarak sıkıştırılmış kolonların yangına dayanıklılığına yaklaşır. Ezilmiş granit üzerine betondan yapılmış sütunlar, kireç kırma taş üzerine yapılan sütunlara göre daha az yangına (%20) sahiptir. Bu, granitin 573 ° C sıcaklıkta çökmeye başlaması ve kireçtaşının 800 ° C sıcaklıkta çökmeye başlamasıyla açıklanmaktadır.

Duvarlar. Yangın sırasında, kural olarak, duvarlar bir taraftan ısıtılır ve bu nedenle ya yangına doğru ya da ters yöne doğru bükülür. Duvar, merkezi olarak sıkıştırılmış bir yapıdan, zamanla artan eksantriklik ile eksantrik olarak sıkıştırılmış bir yapıya dönüşür. Bu koşullar altında yangına dayanıklılık Yük taşıyıcı duvarlar büyük ölçüde yüke ve kalınlıklarına bağlıdır. Yük arttıkça ve duvarın kalınlığı azaldıkça yangına dayanıklılık sınırı azalır ve bunun tersi de geçerlidir.

Binaların kat sayısı arttıkça duvarlardaki yük artar, bu nedenle gerekli yangın direncini sağlamak için konut binalarında taşıyıcı enine duvarların kalınlığı eşit (mm) olarak alınır: 5.. 9 katlı binalar - 120, 12 katlı - 140, 16 katlı - 160, yüksekliği 16 kattan fazla olan binalarda - 180 veya daha fazla.

Tek katmanlı, çift katmanlı ve üç katmanlı kendinden destekli dış duvar panelleri hafif yüklere maruz kalır, dolayısıyla bu duvarların yangına dayanıklılığı genellikle yangın güvenliği gereksinimlerini karşılar.

Hareket halindeki duvarların yük taşıma kapasitesi Yüksek sıcaklık sadece beton ve çeliğin mukavemet özelliklerindeki değişikliklerle değil, esas olarak elemanın bir bütün olarak deforme olabilirliğiyle belirlenir. Duvarların yangına dayanıklılığı, kural olarak, ısıtılmış durumda yük taşıma kapasitesinin kaybı (tahrip) ile belirlenir; "Soğuk" bir duvar yüzeyinin 140°C'ye ısıtılması tipik bir işaret değildir. Yangına dayanıklılık sınırı çalışma yüküne (yapının güvenlik faktörü) bağlıdır. Duvarların tek taraflı darbelerden yıkılması üç şemadan birine göre gerçekleşir:

  • 1) birinci veya ikinci eksantrik sıkıştırma durumu (aşırı ısıtılmış donatı veya "soğuk" beton) nedeniyle duvarın ısıtılmış yüzeyine doğru geri dönüşü olmayan bir sapma gelişmesi ve yüksekliğin ortasında tahrip olması;
  • 2) elemanın başlangıçta ısıtma yönünde ve son aşamada ters yönde sapması ile; yıkım - ısıtılmış beton veya “soğuk” (gerilmiş) donatı üzerindeki yüksekliğin ortasında;
  • 3) şema 1'deki gibi değişken bir sapma yönü ile, ancak duvarın tahribatı, "soğuk" yüzeyin betonu boyunca veya eğik bölümler boyunca destek bölgelerinde meydana gelir.

İlk arıza modeli esnek duvarlar için tipiktir, ikinci ve üçüncüsü ise daha az esnekliğe sahip ve platform destekli duvarlar içindir. Platform desteğinde olduğu gibi duvarın destek bölümlerinin dönme serbestliğini sınırlandırırsanız deforme olabilirliği azalır ve dolayısıyla yangına dayanıklılık sınırı artar. Böylece, duvarların platform desteği (değiştirilemeyen düzlemlerde), elemanın tahribat düzeninden bağımsız olarak, menteşeli desteğe kıyasla yangına dayanıklılık sınırını ortalama iki kat artırdı.

Menteşeli destekle duvar takviyesinin yüzdesinin azaltılması, yangına dayanıklılık sınırını azaltır; platform desteğiyle, duvar takviyesinin olağan sınırlarındaki bir değişikliğin yangına dayanıklılık üzerinde neredeyse hiçbir etkisi yoktur. Bir duvar her iki taraftan (iç duvarlar) aynı anda ısıtıldığında, termal bir sapma yaşamaz, yapı merkezi sıkıştırma ile çalışmaya devam eder ve bu nedenle yangına dayanıklılık sınırı, tek taraflı ısıtma durumunda olduğundan daha düşük değildir.

Betonarme yapıların yangına dayanıklılığının hesaplanmasında temel prensipler

Betonarme yapıların yangına dayanıklılığı, kural olarak, mukavemetin azalması, ısıl genleşme ve donatı ve betonun ısıtıldığında sıcaklık sürünmesi nedeniyle yük taşıma kapasitesinin kaybı (çökme) sonucu olarak kaybolur. yangına maruz kalmayan yüzeyin 140 °C'ye kadar ısıtılmasına. Bu göstergelere göre - Betonarme yapıların yangına dayanıklılık sınırı hesaplanarak bulunabilir.

Genel olarak hesaplama iki bölümden oluşur: termal ve statik.

Isı mühendisliği kısmında, standarda göre ısıtılması sırasında yapının kesiti boyunca sıcaklık belirlenir. sıcaklık koşulları. Statik kısımda ısıtılan yapının yük taşıma kapasitesi (mukavemeti) hesaplanır. Daha sonra zaman içinde yük taşıma kapasitesindeki azalmanın bir grafiği oluşturulur (Şekil 3.7). Bu grafiği kullanarak yangına dayanıklılık sınırı bulunur; ısıtma süresi, bundan sonra yük taşıma kapasitesi yapı çalışma yüküne azaltılacaktır, yani. eşitlik gerçekleştiğinde: M rt (N rt) = M n (M n), burada M rt (N rt) bükme (sıkıştırılmış veya eksantrik olarak sıkıştırılmış) yapının yük taşıma kapasitesidir;

M n (M n), - standart veya diğer çalışma yükünden dolayı bükülme momenti (boyuna kuvvet).