Производство цветных металлов. Металлургия - это что такое? Центры металлургической промышленности

Цветные металлы разделяют на четыре группы:

1) тяжелые металлы (Cu,Ni,Zn,Pb,Sn);

2) легкие металлы (Al,Mg,Be,Li);

3) благородные металлы (Au,Ag,Ptи ее природные спутникиRo,Ir,Os);

4) редкие металлы:

Тугоплавкие (Mo,W,V,Ti,Nb,Ta,Zr,Cr);

Легкие (Sc,St,Ru);

Радиоактивные (U,Th,Ra);

Редкоземельные

Наиболее широко в машиностроении применяют Cu, Al, Mg, Ti, Zn, Ni, Pb и Sn, которые используют в чистом виде и в составе многих сплавов. Цветные металлы имеют решающее значение для развития современного машиностроения и обеспечивают прогресс в развитии новой техники. Однако они весьма дороги, и когда это возможно, их заменяют на черные или неметаллические материалы. Из всех рассмотренных цветных металлов по объемам производства в металлургии важнейшими считаются Cu, Al, Mg и Ti.

Методы производства цветных металлов очень разнообразны. Многие металлы получают пирометаллургическим способом с проведением избирательной восстановительной или окислительной плавки, часто в качестве источника тепла и химического реагента используют серу, содержащуюся в рудах. Кроме того, используют электролиз .Этот способ основан на диссоциации содержащего металл сырья в электролите и последующем осаждении металла на катоде. Электролиз ведут не из водного раствора, а из расплава. Это обусловлено тем, что в растворе на катоде осаждается водород, как более положительный ион, а чистый металл выделить невозможно, образуются лишь его соединения (гидраты окислов). Оборудование – электролизер, имеющий катодное и анодное устройство. Катодное устройство – ванна из огнеупорного материала, в которой находится расплавленный металл и электролит (криолитNa 3 AlF 6 для производства алюминия, хлористый магнийMgClдля производства магния и т.п.). Катодом служит либо расплавленный металл, как в случае получения алюминия, либо стальные пластины, как при получении магния. Анодом служит, как правило, угольный стержень или пластина. В процессе электролиза происходит разряжение ионов металла на катоде и осаждение. Иногда применяют металлотермические процессы, используя в качестве восстановителей производимых металлов другие металлы с большим сродством к кислороду.

Металлотермия – восстановление соединений металла (хлоридов или окислов) другими металлами. Используется при производстве титана. Титановый шлак (продукт доменного производства) хлорируют:TiO 2 +2C+2Cl 2 =TiCl 4 +2CO. Хлорид титана очищается от остальных побочных продуктов за счет различной температуры кипения в конденсационных и фильтрационных установках, затем восстанавливается в реакторах: 2Mg+TiCl 4 =Ti= 2MgCl 2 .

Титан и магний обычно производят на одном заводе, т.к. MgCl 2 – побочный продукт при получении титана служит сырьем для получения магния, а магний и хлор используют при производстве титана.

Также используются такие способы, как химико-термический, цианирование и хлорид-возгонка.

6.1 Последовательность получения меди

Для производства меди используют пирометаллургический способ, так как он позволяет извлекать из руд попутно с медью другие металлы, в том числе и драгоценные. Производство меди осуществляется в следующей последовательности (рис. 7):

1. Для плавки применяют медные руды, содержащие 1 – 6 % Cu, в виде, главным образом, сернистых соединений (CuFeS 2 ,Cu 2 S,CuS), а также отходы меди.

2. Для обогащения применяют метод флотации, позволяющий получить концентрат с содержанием Cu ~ 10 – 35 %.

Флотация – процесс обогащения, основанный на избирательном прилипании частиц минералов, дисперсированных в жидкой среде, к поверхности раздела двух фаз (жидкость – газ, жидкость – жидкость и др.).

3. Для уменьшения содержания серы в руде (концентрате) проводят окислительный обжиг при Т = 750 – 800 0 С. В присутствии кислорода сульфиды окисляются и содержание серы уменьшается почти в 2 раза. Отходящие газы в виде SO 2 (сернистый газ) идут на производство H 2 SO 4 . Для бедных руд, с содержанием Cu 8 – 25 %, обжиг проводят. Богатые руды, с содержанием Cu25 – 35 %, плавят без обжига.

4. В специальных печах при Т = 1250 – 1300 0 С происходит плавка концентрата, при которой расплавленная масса за счет соответствующих химических реакций разделяется на две части: штейн, состоящий из сульфидов Cu 2 SиFeS, и шлак, состоящий из окислов и силикатов.

Штейн – промежуточный продукт производства цветных металлов (Cu,Ni,Pbи др.), представляет сплав сульфидов этих элементов с FeS.

5. Продукт плавки выпускают из печи в виде сплава – штейна, который содержит 20 – 60 % Fe и 20 – 25 % S. В расплавленном состоянии (Т пл = 950 – 1050 0 С) штейн поступает в конвертеры.

6. В конвертерах расплавленный медный штейн продувают воздухом (конвертируют) для окисления сульфидов Cu и Fe с образованием оксидов Cu и Fe. Оксиды железа выводятся в шлак и на первом этапе продувки образуется штейн, содержащий в основном, только сульфиды меди (белый штейн).

7. На втором этапе продувки в конвертере образуется черновая медь за счет окисления сульфида меди и перевода серы в SO 2 . Черновая медь содержит 98,4 – 99,4% Cu (МК1), 0,01 – 0,04% Fe и 0,02 – 0,1% S и др. примеси (Ni,Sn,Sb,Au,Ag). Эту медь через ковш разливают в изложницы на чушки или плиты. Для удаления вредных примесей черновую медь рафинируют.

8. Для очистки черновой меди от примесей применяют двойное рафинирование огневым и электролитическим способом.

9. Огневое рафинирование применяют для удаления примесей с большим сродством к кислороду за счет продувки воздухом расплавленной черновой меди. Окисляют S, Fe, Ni, As, Sb, Zn и переводят их в шлак. Затем с использованием технологии сухой перегонки древесины, погруженной в расплав меди, удаляют газы и восстанавливают остатки Cu 2 O. В результате получают медь чистотой 99,0 – 99,5%. Эта медь в виде чушек идет на производство сплавов меди (латуней, бронз), а в виде плит на электролитическое рафинирование.

10. Электролитическое рафинирование проводят для получения чистой от примесей меди (не менее 99,95% Cu). Электролиз ведут в ваннах, где электролитом служит водный раствор CuSO 4 (10 – 16%) иH 2 SO 4 (10 – 16%). Аноды делают из меди огневого рафинирования, а катоды – из листов чистой (электролитической) меди. Анод при постоянном токе растворяется и ионы меди через раствор переходят и осаждаются на катоде. Примеси (Sb,As,Bi,Au,Ag) осаждаются на дно ванны и после выгрузки перерабатываются для извлечения этих металлов. Катоды переплавляют в электропечах.

Многие цветные металлы и их сплавы обладают рядом ценных свойств: хорошей пластичностью, вязкостью, высокой электро- и теплопроводностью, коррозионной стойкостью и другими достоинствами. Благодаря этим качествам цветные металлы и их сплавы занимают важное место среди конструкционных материалов.

Производство цветных металлов и сплавов

Железо и его сплавы - чугун и сталь - называют черными металлами. Все остальные металлы относятся к категории цветных, в том числе и благородные металлы - золото, серебро, платина.

Разнообразие цветных металлов и обусловило разные методы их получения.

Как и черные металлы, цветные получают из рудного концентрата - предварительно обогащенной руды. Но здесь процесс обогащения сложнее, поскольку многие руды являются полиметаллическими и содержат массу сопутствующих как ценных элементов, так и вредных примесей. Например, среднее содержание меди в рудах составляет всего 1-2%.

Сложность получения цветных металлов хорошо видна на примере меди.

Извлечение меди из руд производится двумя способами: гидрометаллургическим и пирометаллургическим. Более широкое применение получил пирометаллургический способ, включающий следующие операции:

  • - обогащение руд с получением концентрата;
  • - обжиг концентрата;
  • - плавку на медный штейн-сплав;
  • - получение черновой меди;
  • - рафинирование.

После обогащения рудные концентраты подвергают обжигу для частичного удаления (до 50%) серы. Руда, прошедшая обжиг, направляется на дальнейшую переработку, а образовавшийся сернистый газ S0 2 используется для производства серной кислоты.

Плавка на штейн проводится в отражательных пламенных печах и электропечах. В их рабочем пространстве развивается температура до 1600 °С. На поддоне печи постепенно скапливаются жидкие продукты плавки: шлак и штейн-сплав, состоящий, в основном, из сульфидов меди и железа, а также небольшого количества примесей. Штейн по мере накопления выпускают в ковш. В расплавленном состоянии штейн подают в конвертер (рис. 29) для переработки в черновую медь. На поверхность штейна загружают кварцевый песок для шлакования при продувке воздухом оксидов железа. Образовавшийся шлак сливают и направляют на повторную переработку в отражательные печи для извлечения меди. Оставшийся штейн приобретает белый цвет и состоит в основном из сульфидов меди. Содержание меди в белом штейне составляет около 80%. После чего расплавленный белый штейн продувают воздухом и получают черновую медь, которая содержит до 2% примесей железа, серы, цинка, никеля, свинца и др. Ее разливают в слитки и отправляют на рафинирование.

Рис. 29.

  • 1 - фурмы воздушного дутья; 2 - футерованный кожух; 3 - зубчатая передача;
  • 4 - обод; 5 - горловина для заливки штейна; 6 - отверстие для загрузки флюса;
  • 7 - воздухопровод; 8 - опорные ролики; 9 - электродвигатель с редуктором

Рафинирование черновой меди проводят огневым и электролитическим способами.

При огневом рафинировании черновую медь загружают в пламенные печи и после расплавления продувают воздухом с целью окисления меди и растворенных в ней примесей. Образовавшиеся оксиды примесей нерастворимы в меди и удаляются в шлак. Затем металл раскисляют и перемешивают природным газом для удаления растворенных в нем газов.

После огненного рафинирования расплав содержит 99,5-99,7% меди. Полученную медь разливают в слитки или анодные пластины для электролитического рафинирования.

Электролиз меди проводят в ваннах, футерованными кислотостойкими материалами, например, листовым свинцом, асфальтом, керамическими плитами. Электролитом служит 15%-ный раствор медного купороса в серной кислоте. В электролит погружают анодные пластины черновой меди и катоды, представляющие собой тонкие листы из чистой электролитической меди. При включении постоянного тока происходит растворение металла анодов, а на катоде происходит осаждение металлической меди. Электролитическая медь имеет более высокую чистоту от примесей и содержит до 99,98% Си.

Катодную медь переплавляют в плавильных печах, разливают в слитки и отправляют для проката на лист, трубы и проволоку, а также для выплавки сплавов меди - латуней и бронз.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Контрольные вопросы к экзамену по курсу «Технология производства цветных металлов»

1.Сущность получения сплавов совместным восстановлением из руд

сплав литейный алюминиевый магниевый

Сырьём для производства стали служит передельный чугун и стальной лом. Процесс переработки чугуна в сталь сводится к удалению (выгоранию) части углерода и примесей. Получают сталь также прямым восстановлением железа из руды, минуя доменный процесс.

Сталь -- широко распространённый конструкционный материал. Путем легирования и специальной обработки (термической, химико-термической, термомеханической и др.) стали можно придать нужные свойства, удовлетворяющие самым разнообразным требованиям современной техники.

Сталь обладает высокой прочностью и твёрдостью, достаточной пластичностью и вязкостью. Её можно обрабатывать резанием и давлением, отливать.

Развитие техники предъявляет всё новые требования к качеству и свойствам стали, поэтому непрерывно совершенствуются технологические процессы её получения, разрабатываются и внедряются новые марки.

Единой мировой классификации сталей не существует. Обычно сталь классифицируют по способу производства, химическому составу, назначению, качеству, степени раскисления, структуре, методу формообразования изделий из стали.

По способу производства сталь разделяют на мартеновскую, конверторную (кислородно-конверторную, бессемеровскую, томасовскую), электросталь и сталь, получаемую прямым восстановлением из обогащённой руды (окатышей). Мартеновский способ производства, бывший в свое время наиболее распространённым, сейчас утратил первостепенное значение и вытесняется более простым и экономичным, с точки зрения технологии производства, кислородно-конверторным способом. Предпочтение отдаётся также электроплавильным способам, которые позволяют получать сталь самого высокого качества.

По химическому составу сталь делят на углеродистую и легированную.

Углеродистая сталь -- железоуглеродистый сплав (0,02--2,14% С) с неизбежными примесями марганца (до 0,8%), кремния (до 0,5%), серы (до 0,06%), фосфора (до 0,07%) и газов (кислорода, водорода, азота), присутствующих в очень малых количествах -- тысячных долях процента. Железо и углерод являются основными компонентами, определяющими структуру и свойства стали.

Марганец, кремний, сера и фосфор относятся к постоянным, или обычным, примесям. Марганец и кремний необходимы по условиям технологии выплавки стали -- их вводят в расплав для её раскисления. Вредные примеси -- сера и фосфор -- попадают в сталь из руд и печных газов и не поддаются полному удалению на стадии металлургического передела.

Кислород, водород, азот также постоянно присутствуют в стали и относятся к скрытым вредным примесям.

Углеродистые стали в зависимости от содержания углерода подразделяют на низкоуглеродистые (до 0,25% С), среднеуглеродистые (0,25-- 0,60% С) и высокоуглеродистые (свыше 0,60% С).

Легированными называют стали, в состав которых кроме железа, углерода, обычных и скрытых примесей входят легирующие элементы: хром, никель, молибден, вольфрам и другие элементы, которые специально вводятся в сталь для придания ей требуемых свойств. Сталь также считается легированной, если содержание в ней кремния превысит 0,5%, а марганца -- 1%. Легированные стали в зависимости от системы легирования делят на марганцевистые, хромистые, хромоникелевые и т.д.

В зависимости от содержания легирующих элементов различают стали низколегированные (суммарное содержание легирующих элементов до 2,5%), среднелегированные (2,5--10%) и высоколегированные (более 10%). Если суммарное содержание легирующих элементов превышает 50%, т.е. преобладает над железной основой, то такой материал называется сплавом. Например, сплавы с заданным температурным коэффициентом линейного расширения, жаропрочные сплавы и многие другие.

По назначению стали классифицируют на конструкционные, инструментальные и специального назначения (с особыми свойствами).

Конструкционные стали применяют в машиностроении и строительстве для изготовления деталей машин, элементов конструкций и сооружений. В зависимости от назначения и требуемых свойств содержание углерода в различных марках конструкционной стали изменяется в пределах от 0,05 (листовая) до 1% (подшипниковая). Важнейшими характеристиками сталей, по которым осуществляется их выбор, являются механические свойства и прокаливаемость.

Среди конструкционных сталей различают цементуемые, улучшаемые, высокопрочные, автоматные, рессорно-пружинные, подшипниковые и некоторые другие.

Инструментальные стали служат для изготовления режущих, измерительных инструментов, штампов холодного и горячего деформирования. Основным требованием, предъявляемым к инструментальным сталям, является высокая твёрдость, в связи с чем они отличаются повышенным содержанием углерода (исключение -- стали для горячештампового инструмента, подвергаемого в процессе эксплуатации значительным динамическим нагрузкам). При выборе марки инструментальной стали в первую очередь учитывается её теплостойкость (красностойкость), т.е. способность стали длительно сохранять структуру и свойства при повышенных температурах в результате нагрева инструмента в процессе работы. Теплостойкость создают специальной системой легирования инструментальных сталей и применением особых режимов термической обработки.

Стали и сплавы специального назначения делят на две группы: с особыми химическими и с особыми физическими свойствами.

Стали и сплавы с особыми химическими свойствами (коррозионно-стойкие, жаростойкие, жаропрочные) предназначены для работы в агрессивных средах и при высоких температурах.

Стали и сплавы с особыми физическими свойствами (магнитные, с зданным температурным коэффициентом линейного расширения и др.) применяются в основном в приборостроении, электротехнической, радиотехнической и электронной промышленности.

2. сущность получения сплавов металлотермическим способом

Различные исследователи изучали восстановление галоидных солей (хлоридов, фторидов), а также окислов лантаноидов щелочными металлами, алюминием, магнием и щелочноземельными металлами.

Из теплот и свободной энергии образования галогенидов лантаноидов и распространенных металлов-восстановителей, можно заключить, что для хлоридов подходящими восстановителями могут служить натрий и кальций, а для фторидов -- кальций. При восстановлении хлоридов натрием, однако, не удалось получить редкоземельные металлы в виде слитка, хорошо отделяющегося от шлака.

При восстановлении галогенидов магнием и алюминием получаются сплавы редкоземельных элементов с восстановителями, причем выход в сплав недостаточно высокий. Магний может быть отделен от редкоземельного металла вакуумной дистилляцией при температуре выше температуры плавления лантаноидов, но алюминий достаточно полно этим способом не удаляется.

Лучшие результаты в отношении выхода, выплавки слитка и чистоты металлов получены при восстановлении галогенидов кальцием.

Этим методом могут быть получены все лантаноиды за исключением самария, европия и иттербия, восстановление которых протекает только до низших галогенидов. Для получения самария, европия и иттербия разработан метод восстановления их окислов лантаном, с одновременной вакуумной возгонкой этих металлов.

3. Сущность получения сплавов путем электролиза

Электролиз - это совокупность процессов, протекающих в растворе или расплаве электролита, при пропускании через него электрического тока. Электролиз является одним из важнейших направлений в электрохимии.

Электролиз получил широкое распространение в металлургии цветных металлов и в ряде химических производств. Такие металлы, как алюминий, цинк, магний, получают главным образом путем электролиза. Кроме того, электролиз используется для рафинирования (очистки) меди, никеля, свинца, а также для получения водорода, кислорода, хлора и ряда других химических веществ.

Сущность электролиза заключается в выделении из электролита при протекании через электролитическую ванну постоянного тока частиц вещества и осаждении их на погруженных в ванну электродах (электроэкстракция) или в переносе веществ с одного электрода через электролит на другой (электролитическое рафинирование). В обоих случаях цель процессов - получение возможно более чистых незагрязненных примесями веществ.

Если в электролите имеются ионы разных металлов, то первыми на катоде выделяются ионы, имеющие меньший отрицательный нормальный потенциал (медь, серебро, свинец, никель), щелочноземельные металлы выделить труднее всего. Кроме того, в водных растворах всегда имеются ионы водорода, которые будут выделяться ранее, чем все металлы, имеющие отрицательный нормальный потенциал, поэтому при электролизе последних значительная или даже большая часть энергии затрачивается на выделение водорода.

Путем специальных мер можно воспрепятствовать в известных пределах выделению водорода, однако металлы с нормальным потенциалом меньше 1 В (например, магний, алюминий, щелочноземельные металлы) получить электролизом из водного раствора не удается. Их получают разложением расплавленных солей этих металлов.

Нормальные электродные потенциалы веществ, указанные в табл. 1, являются минимальными, при них начинается процесс электролиза, практически требуются большие значения потенциала для развития процесса.

Разность между действительным потенциалом электрода при электролизе и нормальным для него потенциалом называют перенапряжением. Оно увеличивает потери энергии при электролизе.

4. Сущность процесса получения сплавов непосредственным сплавлением металлов.

Плавление - это физический процесс перехода металла из твердого состояния в жидкое расплавленное. Плавление - процесс, обратный кристаллизации, происходит при температуре выше равновесной, т. е. при перегреве. Поскольку жидкий металл обладает большей внутренней энергией, чем твердый, при кристаллизации выделяется теплота. Между теплотой Q и температурой кристаллизации Тк существует определенная связь. Степень перегрева при плавлении металлов не превышает нескольких градусов. В жидком состоянии атомы вещества из-за теплового движения перемещаются беспорядочно, в жидкости имеются группировки атомов небольшого объема, в их пределах расположение атомов аналогично расположению в решетке кристалла. Эти группировки неустойчивы, они рассасываются и снова появляются в жидкости. При переохлаждении жидкости некоторые крупные группировки становятся устойчивыми и способными к росту. Эти устойчивые группировки атомов называют центрами кристаллизации (зародышами). Для осуществления процесса плавления необходимо наличие некоторого перегрева над равновесной температурой, т. е. термодинамического потенциала. Выше равновесной температуры более устойчив жидкий металл, он имеет меньший запас свободной энергии. Ниже этой температуры более устойчив твердый металл. При равновесной температуре свободные энергии жидкого и твердого состояния одинаковы, поэтому при этой температуре обе фазы (жидкая и твердая) могут сосуществовать одновременно и притом бесконечно долго. Равновесная температура очень близка к температуре плавления Тпл, с которой ее часто сравнивают. При охлаждении переход из жидкого состояния в твердое сопровождается образованием кристаллической решетки, т. е. кристаллизацией. Чтобы вызвать кристаллизацию, жидкий металл нужно переохладить до температуры ниже температуры плавления.

Жидкости, находящиеся при температуре, близкой к температуре плавления называются расплавами. Расплавы бывают металлическими, ионными, полупроводниковыми, органическими и высокополимерными. В зависимости от того, какие химические соединения образуют расплавы, выделяют солевые, оксидные, оксидно-силикатные и другие расплавы.

Большинство расплавов имеют в составе искосаэдрические частицы.

В процессе плавления химические связи в расплавах подвергаются видоизменению. В полупроводниках наблюдается образование металлической проводимости, у некоторых галогенидов вместо ионной проводимости происходит снижение электрической проводимости из-за образования расплава с молекулярным составом. Уровень температуры также влияет на тип связи в расплавах.

Среднее координационное число и межатомные расстояния также являются характеристиками расплавов. В процессе плавления металлов происходит уменьшение координационного числа примерно на 10-15 %. В тоже время межатомные расстояния остаются прежними. При плавлении полупроводников происходит увеличение их координационного числа в 1,5 раза, расстояние между атомами также увеличивается. Многокомпонентные расплавы характеризуются неравновесными, метастабильными состояниями, которые имеют взаимосвязь со структурой первоначальных твердых фаз.

5. Назначение литейных и деформируемых литейных сплавов

Деформируемые сплавы. Эти сплавы алюминия могут быть подвергнуты упрочнению закалкой с послед. старением - естественным (при комнатной температуре) или искусственным (при повышенной температуре). В результате закалки образуется пересыщенный твердый раствор легирующих элементов в алюминии. из которого при старении выделяется избыток растворенных элементов в виде зон, метастабильных фаз и стабильных интерметаллидов. Некоторые сплавы алюминия, в частности содержащие хром, марганец, цирконий и железо, способны закаливаться из жидкого состояния; при этом концентрация элементов в пересыщенном твердом растворе может существенно превосходить максимальную равновесную для твердого состояния.

Дополнительное упрочнение деформируемых сплавов алюминия достигается применением нагартовки-холодной прокатки или растяжения полуфабрикатов. Эта операция используется для улучшения механических свойств термически неупрочняемых сплавов, при этом повышаются прочностные свойства и особенно предел текучести, а пластичность снижается. Для термически упрочняемых сплавов алюминия нагартовка производится после закалки перед старением либо после старения; в результате повышаются прочностные свойства при сохранении прежней вязкости разрушения. Полуфабрикаты из деформируемых сплавов алюминия изготавливают из слитков, получаемых методом непрерывной отливки с непосредственным охлаждением водой.

Деформируемые сплавы алюминия по величине разделяют на сплавы низкой (менее 300 МПа), средней (300-480 МПа) и высокой (выше 480 МПа) прочности. К первым относят А1 - Мn, большинство магналиев, Al-Mg-Si. Из них изготавливают фольгу для консервных банок, пробок, молочных фляг, электропровода, оконные рамы, окантовки дверей и др. Сплавы средней прочности - дуралюмины, ковочные Al-Cu-Mg и Al-Cu-Mg-Si, жаропрочные ковочные Al-Cu-Mg-Fe-Ni, криогенные и жаропрочные свариваемые Al-Cu-Mn, сплавы пониженной плотности Al-Li-Mg. Эти сплавы используют для изготовления осн. элементов несущих конструкций (работающих при комнатной и повышенной температурах и в криогенной технике), элементов двигателей внутреннего сгорания, газотурбинных двигателей и др. Высокопрочные сплавы Al-Zn-Mg-Cu, Al-Cu -- Mg-Li и Al-Cu-Li используют в сильно нагруженных конструкциях.

Порошковые и гранульные сплавы алюминия получают распылением жидкого Аl в воздухе или инертной атмосфере в специальных установках, обеспечивающих сверхвысокую скорость охлаждения (сотни тысяч - миллионы градусов в секунду). Размер частиц порошковых сплавов 5-500 мкм, гранульных - 1-2 мм.

Наибольшее применение имеют порошковые сплавы алюминия - САП (спеченная алюминиевая пудра) и САС (спеченный алюминиевый сплав). В САП упрочняющая фаза - мельчайшие частицы А1 2 О 3 , образующегося при размоле в мельницах в окислительной атмосфере. Этот материал отличается высокой термической и коррозионной стойкостью. Он сохраняет прочность при температурах до 660°С (т-ра плавления А1) и даже несколько выше. САС содержит 25-30% Si и 5-7% Ni. Упрочняющая фаза - мельчайшие частицы интерметаллидов и А1 2 О 3 . Этот сплав имеет более низкий температурный коэффициент линейного расширения [(11,5-13,5)*10 -6 К -1 ], чем большинство остальных сплавов алюминия сплавы.

Благодаря тому, что скорость охлаждения при получении порошковых и гранульных сплавов очень велика, удается создать материалы, представляющие собой пересыщенные твердые растворы. К ним относятся высокопрочные сплавы Al-Zn-Mg-Cu, жаропрочные Al-Fe-Ce, сплавы пониженной плотности А1-Mg-Li, пластичные Al-Cr-Zr. Св-ва порошковых и гранульных сплавов, особенно пластичность, улучшаются после вакуумной дегазации. Заготовки из порошковых сплавов алюминия сплавы имеют форму брикетов, из которых обработкой давлением получают полуфабрикаты. Порошковые сплавы применяют для изготовления деталей и узлов малонагруженных конструкций, работающих в интервале 250-500°С, высоконагруженных конструкций, работающих при комнатной температуре, в приборостроении.

Высокомодульные деформируемые сплавы Al-Be-Mg -- двухфазные гетерогенные системы. Они превосходят по модулю упругости пром. легкие сплавы в 2-3 раза; их плотн. 2,0-2,4 г/см 3 , модуль упругости 45 000-220 000 МПа, относит. удлинение 15-10%. Такие сплавы обладают также повыш. теплоемкостью и теплопроводностью. более высокой усталостной прочностью (в т.ч. уникальной акустич. выносливостью), меньшей скоростью роста усталостных трещин. Применяют их преим. для изготовления тонких жестких элементов несущих конструкций, что позволяет уменьшить массу изделия до 40%.

При получении изделий из сплавов алюминия обработкой давлением возможно использование сверхпластичности этих сплавов, которая реализуется при размере зерна в структуре сплава менее 10 мк, причем эта структура должна изменяться при температуре, превышающей половинное значение температуры плавления. Большая группа сплавов алюминия сплавы обладает эффектом сверхпластичности и находит промышленное применение. По свойствам различают три группы литейных сплавов: высокопрочные и средней прочности; жаропрочные (для работы до 200-400°С); коррозионностойкие (для работы в морской воде). Сплавы высокопрочные и средней прочности малопроницаемы для газов и жидкостей (могут выдерживать без утечки жидкости давление до 15-25 МПа); из них изготавливают отливки практически любых конфигураций и размеров всеми существующими методами литья. Для измельчения структуры и улучшения свойств силуминов в их расплав перед разливкой вводят небольшие кол-ва Na (в виде солей). Возникающая при этом пористость подавляется кристаллизацией под давлением в автоклавах.

Наибольшей жаропрочностью среди литейных сплавов обладают Al-Cu-Mg-Ni и Al-Cu-Ni-Mn; из них изготавливают литые поршни.

6. Маркировка алюминиевых сплавов

Состав промышленных алюминиевых сплавов регулируется ГОСТ 4784-97, ГОСТ 1583-93, ГОСТ 114-78 и др.

Для маркировки деформируемых алюминиевых сплавов применяют смешанную буквенную и буквенно-цифровую маркировки. Примеры приведены в таблице:

Вид алюминия (сплава алюминия)

Маркировка

Алюминий чистый, нелегированный

А999, А995, А99, А97, А95, А85, А8, А7, А7Е, А6, А5, А5Е, А0, АД0, АД1, АД00

Деформируемые алюминиевые сплавы с низким содержанием магния (до 0,8%)

Д1, В65, Д18, Д1П, АД31, АД

Деформируемые алюминиевые сплавы с повышенным содержанием магния (до 1,8%)

Д12, Д16, АМг1, Д16П

Литейные алюминиевые сплавы с низким содержанием меди (до 1,5%)

АЛ5, АЛ32, АЛ2, АЛ4, АЛ4-1, АЛ9, АЛ9-1, АЛ34, АК9 (АЛ4В), АК7 (АЛ9В), АЛ5-1

Литейные алюминиевые сплавы с высоким содержанием меди (более 1,5%)

АЛ3, АЛ6, АК5М2 (АЛ3В), АК7М2 (АЛ14В), АЛ7, АЛ19, АК5М7 (АЛ10В), АЛ33 (ВАЛ1)

Литейные алюминиевые сплавы с высоким содержанием кремния

АЛ1, АЛ21, АЛ25, АЛ30, АК21М2,5Н2,5, АК18, КС-740

Деформируемые алюминиевые сплавы с высоким содержанием магния

АМг2, АМг3, АМг4, АМг5, АМг5п, АМг6

Литейные алюминиевые сплавы с высоким содержанием магния

АЛ8, АЛ27, АЛ27-1, АЛ13, АЛ22, АЛ23, АЛ23-1, АЛ28

Деформируемые алюминиевые сплавы с высоким содержанием цинка

В95, 1915 и 1925

Литейные алюминиевые сплавы с высоким содержанием цинка

АЛ11, АК4М4, АК4М2Ц6

7. Особенности плавки алюминиевых сплавов

Приготовление алюминиевых сплавов.

Алюминиевые сплавы легко окисляются при расплавлении, насыщаются водородом (содержание водорода может достигать 0,5-,0 см 2 сна 100 г металла) и другими неметаллическими включениями.

Основные окислители - кислород и пары воды. В зависимости от температуры, парциального давления кислорода и паров воды, а также кинетических условий взаимодействия при окислении образуется оксид алюминия (Аl 2 O 3) и субоксиды (Al 2 O и AlO).

В обычных условиях плавки термодинамически устойчивой фазой является оксид алюминия г - Аl 2 O 3 , который не растворяется в алюминии и не образует легкоплавких соединений.

Кроме оксидов алюминия в расплавах могут присутствовать: оксид магния (MgO), магнезиальная шпинель MgAl 2 O 4 , нитриды алюминия, магния, титана (AlN , Mg 3 N 3 , TlN0, карбиды алюминия (Al 2 C), бориды алюминия и титана (AlB 2 . TlB 3) и др.

Большинство легирующих элементов (Сu, Si, Mn) не оказывают влияния на процесс окисления алюминия; щелочные и щелочно - земельные металлы (К, Na, Li, Ba, Ca, Sr, Mg), а также цинк увеличивают окисляемость алюминия из-за образования рыхлых оксидных плен.

Порядок загрузки шихтовых материалов: чушковый алюминий, крупногабаритные отходы, отходы литейных и механических цехов (литники, некачественные отливки, брикетизированная стружка и т.п.), переплав, лигатуры (чистые металлы). Компоненты шихты вводят в жидкий металл при температуре, о С: 730 (не выше) - стружку и мелкий лом; 740-750 - медь, при 700-740 - кремний, 700-740 - лигатуры; цинк загружают перед магнием к концу плавки. Температура нагрева литейных алюминиевых сплавов не должна превышать 800-830 о С.

Обязательной операцией является рафинирование от неметаллических включений и растворенного водорода.

Основным источником водорода являются пары воды, оксидные пленки на шихтовых материалах, легирующие элементы и лигатуры. Максимальная скорость плавки и минимальная длительность выдержки в печи перед разливкой способствуют повышению его чистоты.

Уменьшение компактности и увеличение удельной поверхности шихтовых материалов оказывают существенное влияние на степень загрязнения алюминиевых сплавов неметаллическими включениями и водородом.

При плавке алюминиевых сплавов, содержащих кремний, следует предусмотреть меры от загрязнения сплавов железом. Перед плавкой необходимо очистить печь (тигель) от остатков шлака предыдущей плавки. Чугунный тигель и плавильный инструмент очищают от следов расплава и окрашивают защитной краской.

При плавке алюминиевых сплавов, содержащих магний, медь и марганец, вначале в печь загружают чушковый алюминий и силумин, затем лигатуры и чушковые отходы. Магний вводят после рафинирования при 720-730 о С с помощью окрашенного колокольчика, после чего сплавы модифицируют и разливают.

Плавку сложнолегированных алюминиевых сплавов с высоким содержанием магния проводят только в графитовых тиглях в связи с минимально допустимым содержанием вредных примесей железа и кремния.

Применяемый плавильно - разливочный инструмент должен быть из графита или титана.

При использовании для приготовления сплавов возврата собственного производства порядок плавки должен быть следующий: расплавление чистого алюминия и лигатуры Аl - Be; введение при 670-700 о С возврата собственного производства. После расплавления возврата порядок загрузки остальных составляющих шихты и режимы плавки сохраняются такими же, как и при приготовлении на чистых металлах. Температура перегрева сплавов не должна превышать 750 о С.

8. Рафинирование расплава алюминия

Алюминий высокой чистоты в промышленном масштабе получают методом электролитического рафинирования по трехслойному способу. Этот процесс осуществляется в электролизерах для рафинирования алюминия. Серия электролизеров для рафинирования располагается, как правило, в одном корпусе, аналогичном по своей конструкции корпусу электролиза алюминия.

Основным сырьем для электролитического рафинирования служит расплавленный алюминий технической чистоты, поэтому корпуса электролитического рафинирования входят в состав электролизного цеха. Обычно они называются отделением рафинирования.

Электролитическое рафинирование алюминия по трехслойному методу основано на способности алюминия в процессе электролизаего сплава с медью к электрохимическому растворению на аноде и восстановлению на катоде: на аноде Al--Зе>Al 3+ ; на катодеAl 3+ +3e>Al.

В результате электролиза более электроположительные элементы (железо, кремний, медь и др.) накапливаются в анодномсплаве. Более электроотрицательные элементы (натрий, барий, кальций и др.) переходят в электролит, не выделяясь на катоде,так как потенциал их выделения выше потенциала алюминия.

Для создания условий протекания этого процесса приготавливают анодный сплав алюминия с 30--40 % Сu, плотность которого3,2--3,5 г/см 3 , и он располагается на подине шахты электролизера. Катодом служит рафинированный алюминий, имеющий притемпературе протекания процесса электролиза плотность 2,3 г/см 3 . Между анодным сплавом и катодным металлом находится слойэлектролита плотностью 2,7 г/см 3 , который состоит из криолита, хлористого бария и хлористого натрия.

В настоящее время применяются электролизеры для производства алюминия высокой чистоты на силу тока до 100 кА (рис. 136).Габариты и конструкция этих электролизеров зависят от их мощности. Величина катодной и анодной плотностей тока при рафинировании в зависимости от мощности электролизеров составляет 0,5--0,7 А/см 2

Рафинировочные электролизеры монтируют в сварном металлическом кожухе прямоугольной формы с днищем. С наружнойстороны к кожуху для увеличения жесткости приваривают вертикальные и горизонтальные “ребра” жесткости из профилированной стали. Футеровка кожуха до уровня подины аналогична футеровке электролизеров для производства алюминия; боковые стенки кожуха футерованы токонепроводящими материалами: листовым асбестом, шамотным и магнезитовым кирпичом, стойким к действию электролита, применяемого при рафинировании. С одной из сторон электролизера смонтирован футерованный магнезитовымкирпичом загрузочный карман, который на уровне подины соединен каналом с шахтой ванны.

Перед началом эксплуатации нагревают шахту ванны и обжигают межблочные швы теплом от сжигания газообразного или жидкого топлива, подаваемого в зону обжига форсунками. Прогрев подины и боковых стенок шахты необходимо вести равномерно по всей поверхности, так как местные перегревы могут привести к образованию трещин в подовых блоках и боковой футеровке.

Пуск рафинировочного электролизера производят в следующем порядке. На очищенную подину устанавливают предварительно подогретые графитированные катоды, соединенные через алюминиевую штангу с катодными шинами. Затем на подину через карман заливают анодный сплав, и электролизер включают в электрическую цепь. После этого в ванну заливают электролит и одновременно поднимают катодное устройство. При включении электролизера в цепь обязательно проверяют равномерность распределения тока по катодам; при обнаружении нарушения обычно заменяют катоды. Для создания нормальных условий протекания процесса электролиза катоды поднимают из электролита на необходимую высоту.

Для создания катодного слоя алюминия в начале работы электролизера применяют высокосортный алюминий-сырец, который заливают в ванну до создания слоя не менее 100 мм.

9. Модифицирование сплавов алюминия

Модифицирование. Для измельчения макрозерна и различных фаз, а также для придания им благоприятной формы алюминиевые сплавы модифицируют. Доэвтектические и эвтектические силумины модифицируют с целью измельчения кристаллов эвтектического кремния. Для этого вводят 0,05... 0,1 % натрия или стронция в виде солей NaF и NaCl на поверхность металла, очищенную от шлака. В результате реакций, происходящих в металле, выделяется натрий, производящий модифицирующее воздействие:

6NaF + Al = Na3AlF6 + 3Na.

С целью ускорения этого процесса металл следует перемешивать. Эффект модифицирования сохраняется 20...30 мин, в течение которых металл должен быть залит в формы. Модифицирующее действие стронция сохраняется в течение 2...3 ч.

Стронций вводят в виде лигатуры алюминий--стронций, содержащей 10 % Sr. Заэвтектические силумины модифицируют для измельчения первичных кристаллов кремния. В качестве модификатора используют фосфор в виде лигатуры Си--Р (10% Р), смеси красного фосфора с фторцирконатом калия и хлористым калием, а также смеси фосфорорганических веществ. Следует заметить, что модифицирование фосфором в виде лигатуры Си--Р требует повышенной температуры (880...920°С) и длительной выдержки (20...30 мин).

Широкое распространение получили так называемые универсальные флюсы, выполняющие функции рафинирующих флюсов и модификаторов. В составе этих флюсов кроме КС1, NaCl и Na3AlF6 содержится свыше 25 % NaF, обеспечивающего модифицирующее действие флюса.

Расход дегазирующих и модифицирующих добавок зависит от способа их применения. Так, по данным ВАЗа расход порошкообразного гексахлорэтана составляет 0,2 %, а при использовании его в виде таблеток расход не превышает 0,05 % от массы расплава. Модифицирующие средства в прессованном виде также расходуются в меньшем количестве, чем порошковые (0,1 против 1 %). Это объясняется отсутствием просыпи при вводе таблетки, а, кроме того, постепенное разложение таблетки исключает возможность выброса непрореагировавшего реагента на поверхность металла, что характерно при усвоении порошкообразного вещества.

В последние годы разработаны модификаторы для сплавов алюминия, содержащих до 26 % Si. Это смеси фосфористой меди и гидрата лития, лигатуры А1--(10... 50 %) Sr, Al--Ti--В и др.

10. Особенности технологии производства фасонных отливок из алюминиевых сплавов

Литье в кокиль

Литье в кокиль - это процесс изготовления фасонных отливок в формах, изготовляемых из чугуна, стали или других сплавов. Метод литья в кокиль имеет ряд преимуществ перед литьем в песчаные формы: металлическая форма выдерживает большое количество заливок (от нескольких сот до десятков тысяч) в зависимости от сплава, заливаемого в форму.

Отливки, залитые в кокиль, имеют большую точность размеров и лучшую чистоту поверхности, чем при литье в песчаные формы, и требуют меньшего припуска на механическую обработку. Структура металла получается более мелкозернистой, вследствие чего повышаются его механические свойства; кроме того, устраняется необходимость в формовочной смеси, улучшаются технико-экономические показатели производства и санитарно-гигиенические условия труда. Литье в кокиль имеет и свои недостатки. К ним относятся большая стоимость изготовления формы, повышенная теплопроводность формы, что может привести к пониженной заполняемости форм металлом вследствие быстрой потери жидкотекучести, частое получение поверхностного отбела (образование ледебуритного цементита) у чугунных отливок, что затрудняет их механическую обработку.

Фасонные отливки при литье в кокиль изготовляют из стали, чугуна, медных, алюминиевых, магниевых и других сплавов.

Конструкции кокилей чрезвычайно разнообразны. Кокиль для простых отливок изготовляют из двух частей, соответствующих верхней и нижней опокам при литье в песчаные формы. Для сложных отливок форму изготовляют из нескольких разъемных частей; каждая из них образует часть отливки; поверхность разъема форм определяется конструкцией отливки.

Для получения внутренней полости отливки применяют песчаные и металлические стержни. Для отливок из легкоплавких сплавов преимущественно применяют металлические стержни, а для чугунных и стальных отливок -- песчаные.

Алюминиевые поршни отливают с металлическим стержнем. Корпус кокиля состоит из трех частей (1, 2 и 3). Литниковая система 4 расположена в плоскости разъема. Внутреннюю полость отливки образует металлический стержень. Для обеспечения возможности выемки металлического стержня из отливки его делают разъемным (из нескольких частей). На рис.1 показан металлический стержень из трех частей. После заливки и затвердевания сплава сначала вынимают центровую конусообразную часть 1, а затем боковые части 2 и 3.

Форма для изготовления алюминиевого поршня.

Схема технологии отливки поршня в кокиль на заводе-автомате: 1 -- транспортер для загрузки чушек алюминиевых сплавов; 2 -- загрузочная площадка; 3 -- плавильный агрегат; 4 -- дозирующее устройство; 5 -- литейная машина с шестью металлическими формами; 6 -- механическая рука; 7 -- перегрузочное устройство; 8 -- фрезерный станок для обрезки литников; 9 -- склиз; 10 -- конвейер отпускной печи; 11 -- отпускная печь; 12 -- конвейер для охлаждения поршней воздухом до температуры цеха; 13 -- склиз для подачи поршней к прессу Бринеля; 14 -- пресс Бринеля; 15 -- склиз для подачи поршней в бункер на хранение; 16 -- бункер; 17--19 -- транспортеры для подачи литников и отходов на загрузочную площадку.

11. Состав и свойства магниевых сплавов

Магний и магниевые сплавы

Литейные и деформируемые магниевые сплавы в отечественных стандартах (ГОСТ) обозначаются следующим образом:

МЛ - магниевые литейные сплавы (ГОСТ 2856); МА - магниевые деформируемые сплавы (ГОСТ 14957); пч - повышенной чистоты; он - общего назначения.

Литейные магниевые сплавы подразделяются в зависимости от способа литья: в песчаные формы, в кокиль, литье под давлением и др.

Деформируемые магниевые сплавы классифицируются следующим образом: сплавы для прессования, ковки, штамповки, для горячей и холодной прокатки.

Кроме того, литейные и деформируемые магниевые сплавы классифицируются по прочности при нормальных и повышенных температурах, коррозионной стойкости и плотности.

По уровню прочности и ряду других основных свойств (жаропрочности, плотности) магниевые деформируемые сплавы подразделяются на 4, а литейные - на 3 группы.

По предельно допустимым рабочим температурам и длительности работы при них магниевые сплавы подразделяются следующим образом:

Марки литейных сплавов

Марки деформируемых сплавов

Длительно до 150°С, кратковременно до 200°С

МЛ3, МЛ4, МЛ4пч, МЛ5, МЛ5пч, МЛ5он, МЛ6, МЛ8

МА1, МА2, МА2-1, МА5, МА2-1пч, МА15, МА19, МА20

Длительно до 200°С, кратковременно до 250°С

Длительно до 200-300°С, кратковременно до 300-400°С

МЛ9, МЛ10, МЛ11, МЛ19

Длительно до 125°С

Длительно до 60°С

По коррозионной стойкости во всех климатических атмосферных условиях магниевые сплавы можно разделить на 3 основные группы:

По степени свариваемости магниевые сплавы можно классифицировать:

В США и некоторых других странах магниевые сплавы обозначаются по системе, разработанной Американским обществом по испытаниям материалов (ASTM), включающей основные данные по химическому составу и состоянию поставки. Обозначение сплавов начинается с двух букв, представляющих два основных легирующих элемента. Буквы располагаются по убыванию содержания элементов или, при равных их количествах - по алфавиту. За буквами следуют цифры, указывающие содержание элементов в целых процентах. Последующие буквы (А, В, С) отражают модификацию сплава по содержанию второстепенных легирующих элементов или примесей. Чистота сплава увеличивается от С до А, т.е. А - наиболее чистый. Символ "Х" обозначает, что сплав новый и пока не стандартизирован, т.е. так называемый "временно стандартизированный сплав", например АZ81ХА.

12. Особенности плавки магниевых сплавов

Для плавки магниевых сплавов применяют тигельные печи с выемным или стационарным тиглем вместимостью 200-450 кг или отражательные печи большой вместимости. При этом после расплавления всей шихты сплав переливают в тигельные раздаточные печи, в которых производится его рафинирование.

В разогретый тигель или печь загружают небольшое количество размолотого флюса и около половины всего количества магния, поверхность которого также засыпается флюсом. После расплавления первой порции магния постепенно загружают остальное количество магния. Затем, когда расплавится весь магний, в сплав при температуре 680-700 °С вводят предварительно мелко раздробленную лигатуру алюминий-марганец.

Марганец в магниевые сплавы вводят при температуре 850 °С в виде смеси металлического марганца или хлористого марганца О флюсом ВИЗ. Затем в тигель постепенно загружают возврат. В течение всего процесса плавки поверхность сплава должна быть покрыта слоем флюса ВИЗ.

Цинк присаживается в конце плавки при температуре расплава 700-720 °С. При той же температуре в сплав присаживается бериллий в виде лигатур магний - бериллий или марганец-алюминий-бериллий или в виде фторбериллата натрия NaBeF4. Лигатуры, содержащие бериллий, вводят в сплав до рафинирования, а фторбериллат натрия - во время рафинирования.

Церий, являясь компонентом некоторых новых магниевых сплавов, входит в состав мишметалла, имеющего следующий состав (%): 45-55 церия, до 20 лантана, 15 железа, остальное- редкоземельные элементы первой группы. При расчете шихты учитывают суммарное содержание всех редкоземельных элементов. Мишметалл добавляют в расплав после рафинирования при помощи железного сетчатого стакана, погружаемого на глубину 70-100 мм от зеркала сплава.

Цирконий вводят в сплав в виде фторцирконата натрия Na2ZrFe при температуре 850-900 °С.

Если в магниевый сплав необходимо ввести значительное количество циркония, как, например, в новый теплопрочный литейный сплав МЛ12, содержащий 4-5% Zn, 0,6-1,1% Zr, остальное- магний, приходится пользоваться так называемой шлак-лигатурой, Для приготовления шлак-лигатуры используют шихту следующего состава, %: 50 фторцирконата калия; 25 карналлита; 25 магния. Шлак-лигатуру приготавливают одновременно в двух тиглях. В одном тигле расплавляют карналлит и после прекращения бурления при температуре 750-800 °С замешивают фторцирконат калия до получения однородной расплавленной массы. Затем в эту смесь вливают расплавленный в другом тигле магний, нагретый до 680-750 °С. Полученная шлак-лигатура содержит 25-50% циркония.

Заключительной стадией плавки любого магниевого сплава является обработка его в жидком состоянии с целью рафинирования, а также модифицирования структуры. Рафинирование магниевого сплава проводят после введения всех легирующих добавок и доведения температуры расплава до 700-720 °С. Лишь в случае обработки магниевого сплава фторбериллатом натрия температура нагрева сплава перед рафинированием повышается до 750-760 °С. Обычно рафинирование производят путем перемешивания сплава железной ложкой или шумовкой в течение 3-6 мин; при этом поверхность расплава посыпают размолотым флюсом ВИЗ. Перемешивание начинают с верхних слоев сплава, затем ложку постепенно опускают вниз, не доходя до дна примерно на 1/2 высоты тигля. Рафинирование считается законченным, когда поверхность сплава приобретает блестящий, зеркальный вид. По окончании рафинирования с поверхности сплава счищают флюс, а зеркало сплава вновь покрывают ровным слоем свежей порции размолотого флюса ВИЗ. Затем магниевые сплавы, кроме сплавов МЛ4, МЛ5 и МЛ6, нагревают до 750-780 °С и выдерживают при этой температуре в течение 10-15 мин.

Магниевые сплавы марок МЛ4, МЛ5 и МЛ6 перед разливкой подвергают модифицированию. После снятия с поверхности сплава загрязнений, образовавшихся при модифицировании, и после засыпки поверхности расплава свежей порцией флюса эти сплавы выдерживают, при этом температура понижается до 650-700 °С, затем производят заливку форм.

В ходе плавки тщательно наблюдают за состоянием поверхности жидкого сплава. Если сплав начинает гореть, его необходимо засыпать порошкообразным флюсом при помощи пневматического флюсораспылителя.

13. Рафинирование и модифицирование расплавов из магния

Рафинирование под флюсами проводят путем перемешивания расплава движениями мешалки вниз -- вверх в течение 5...6 мин при температуре 700...720°С. При этом на поверхность металла добавляют порции сухого измельченного флюса. Расплавленный флюс обволакивает нежелательные примеси, содержащиеся в металле, и при последующей выдержке металла осаждает их на дно тигля. Рафинирование считается законченным, когда поверхность металла приобретает блестящий зеркальный вид. После этого наносят свежий флюс и выдерживают под ним металл в течение 10... 15 мин при 750...800°С. Затем снижают температуру до 700 °С и выдают металл из печи.

Для рафинирования магниевых сплавов используют также продувку аргоном при 720...740°С или фильтрацию через сетчатые и зернистые фильтры. Зернистые фильтровальные материалы (магнезит, графит, кокс в смеси с другими веществами) обеспечивают наиболее полную очистку расплава. Стальные сетчатые фильтры снижают загрязненность приблизительно в пять раз. Для связывания водорода в устойчивые гидриды в расплав перед разливкой иногда вводят до 0,1 % Са.

При ответе на вопросы желательно привести примеры и иллюстрации.

Литература

1. Б.В. Захаров. В.Н. Берсенева «Прогрессивные технологические процессы и оборудование при термической обработке металлов» М. «Высшая школа» 1988 г.

2. В.М. Зуев «Термическая обработка металлов» М. Высшая школа 1986 г.

3. Б.А. Кузьмин «Технология металлов и конструкционные материалы» М. «Машиностроение» 1981 г.

4. В.М. Никифоров «Технология металлов и конструкционные материалы» М. «Высшая школа» 1968 г.

Размещено на Allbest

Подобные документы

    Применение деформируемых алюминиевых сплавов в народном хозяйстве. Классификация деформируемых алюминиевых сплавов. Свойства деформируемых алюминиевых сплавов. Технология производства деформируемых алюминиевых сплавов.

    курсовая работа , добавлен 05.02.2007

    Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.

    презентация , добавлен 29.09.2013

    Исследование основных литейных свойств сплавов, изучение способа получения отливок без дефектов и описание технологии отлива детали под давлением. Изучение схемы прокатного стана и механизма его работы. Анализ свариваемости различных металлов и сплавов.

    контрольная работа , добавлен 20.01.2012

    Химико-физические свойства медных сплавов. Особенности деформируемых и литейных латуней - сплавов с добавлением цинка. Виды бронзы - сплавов меди с разными химическими элементами, главным образом металлами (олово, алюминий, бериллий, свинец, кадмий).

    реферат , добавлен 10.03.2011

    Особенности медных сплавов, их получение сплавлением меди с легирующими элементами и промежуточными сплавами - лигатурами. Обработка медных сплавов давлением, свойства литейных сплавов и область их применения. Влияние примесей и добавок на свойства меди.

    курсовая работа , добавлен 29.09.2011

    Зависимость свойств литейных сплавов от технологических факторов. Основные свойства сплавов: жидкотекучесть и усадка. Литейная форма для технологических проб. Графики зависимости жидкотекучести, линейной и объемной усадки от температуры расплава.

    лабораторная работа , добавлен 23.05.2014

    Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.

    учебное пособие , добавлен 29.01.2011

    Назначение и виды термической обработки металлов и сплавов. Технология и назначение отжига и нормализации стали. Получение сварных соединений способами холодной и диффузионной сварки. Обработка металлов и сплавов давлением, ее значение в машиностроении.

    контрольная работа , добавлен 24.08.2011

    Общие сведения о трубопроводах. Технологические трубопроводы. Сложность изготовления и монтажа технологических трубопроводов. Трубы и детали трубопроводов из цветных металлов и их сплавов, их конфигурация, техническая характеристика, области применения.

    курсовая работа , добавлен 19.09.2008

    Основные сварочные материалы, применяемые при сварке распространенных алюминиевых сплавов. Оборудование для аргонно-дуговой сварки алюминиевых сплавов. Схема аргонно-дуговой сварки неплавящимся электродом. Электросварочные генераторы постоянного тока.

Цветная металлургия – отрасль тяжелой индустрии, производящая конструкционные материалы. Она включает в себя добычу, обогащение металлов, передел цветных, производство сплавов, проката, переработку вторичного сырья, а также добычу алмазов. В бывшем СССР производилось 7 млн. тонн цветных металлов.

Развитие НТП требует увеличение производства прочных, пластичных, стойких против коррозии, легких конструкционных материалов (сплавы на основе алюминия и титана). Они широко используются в авиационной, ракетной промышленности, в космических технологиях, в судостроении, в производстве оборудования для химической промышленности.

Медь широко используется в машиностроении и электрометаллургии, как в чистом виде, так и в виде сплавов – с оловом (бронза), с алюминием (дюралюминий), с цинком (латунь), с никелем (мельхиор).

Свинец используется в производстве аккумуляторов, кабелей, в атомной промышленности.

Цинк и никель используются в черной металлургии.

Олово используется при производстве белой жести и подшипников.

Благородные металлы обладают высокой пластичностью, а платина – тугоплавкостью. Поэтому они широко применяются при изготовлении ювелирных изделий и техники. Без солей серебра невозможно изготовить кино- и фотопленку. По физическим свойствам и назначению цветные металлы можно условно поделить на 4 группы.

Классификация цветных металлов:

Основные

тяжелые – медь, свинец, цинк, олово, никель

легкие – алюминий, титан, магний

малые – мышьяк, ртуть, сурьма, кобальт

Легирующие – молибден, ванадий, вольфрам, кремний

Благородные – золото, серебро, платина

Редкие и рассеянные – галлий, селен, теллур, уран, цирконий, германий

Отрасли цветной металлургии:

свинцово-цинковая металлургия тяжелых металлов

никель-кобальтовая

оловянная

алюминиевая

титаномагниевая металлургия легких металлов

Цветные металлы обладают прекрасными физическими свойствами: электропроводимостью, ковкостью, плавкостью, способностью образовывать сплавы, теплоемкостью.

По стадиям технологического процесса цветная металлургия делится на:

Добычу и обогащение рудного сырья (ГОК – горно-обогатительные комбинаты). ГОК базируются у источников сырья, т. к. для производства одной тонны цветного металла в среднем требуется 100 тонн руды.

Передельную металлургию. В передел поступают обогащенные руды. У сырья базируется производства, связанные с медью и цинком. У источников энергии – производства, связанные с алюминием, цинком, титаном, магнием. У потребителя – производства, связанные с оловом.

Обработка, прокат, производство сплавов. Предприятия базируются у потребителя.

Россия обладает многими видами цветных металлов. 70% руд цветных металлов добывается открытым способом.

Специфика руд цветных металлов состоит в:

а) в их сложном составе (многокомпонентности)

б) в низком содержании полезных компонентов в руде – всего несколько %, иногда и доля %:

медь – 1-5%

цинк – 4-6%

свинец – 1,5%

олово – 0,01-0,7%

Для получения 1 тонны медного концентрата используется 100 тонн руды, 1 тонны никелевого концентрата – 200 тонн, оловянного концентрата – 300 тонн.

Все руды предварительно обогащаются на ГОКах и в металлургическом переделе. Там производятся концентраты:

медь – 75%

цинк – 42-62%

олово – 40-70%

Вследствие значительной материалоемкости цветная металлургия ориентируется на сырьевые базы. Поскольку руды цветных и редких металлов обладают многокомпонентным составом, то практическое значение имеет комплексное использование сырья. Комплексное использование сырья и утилизация промышленных отходов связывает цветную металлургию с другими производствами. На этой основе формируются целые промышленные комплексы, например, Урал. Особый интерес представляет комбинирование цветной металлургии и основной химии. При использовании сернистых газов в промышленности производятся цинк и медь.

Факторы размещения:

сырьевой – медь, никель, свинец

топливно-энергетический – титан, магний, алюминий

потребительский – олово

Металлургия тяжелых металлов (медь, никель, цинк, олово, свинец).

Для руд тяжелых металлов характерно малое содержание металла в единице руды.

Медная промышленность.

Медная промышленность приурочена к районам сырья из-за низкого содержания в концентрате, кроме рафинирования чернового металла. Основные типы руд:

медные колчеданы – сосредоточены на Урале. Красно Уральск (Свердловская область), Ревда (Свердловская область), Гай (очень высокое содержание металла – 4%), Сибай, Баймак.

медно-никелевые. Талнахское (север Красноярского края). На нем базируется Норильский комбинат

медистые песчаники. Перспективное месторождение – Удоканское в Читинской области севернее г. Гары.

В качестве дополнительного сырья используются медно-никелевые и полиметаллические руды (из них получают медь в виде штейна).

Производство меди распадается на 2 цикла:

производство черновой медь (штейна)

производство рафинированной меди (очищение методом электролиза)

Медеплавильные заводы находятся на:

Урале: Красно Уральск, Кировоград, Ревда, Медногорск, Карабаш.

Электролитные заводы:

Кыштым, Верхняя Пышма.

На Урале широко развита утилизация производственных отходов для химических целей: Красно Уральск, Ревда. После обжига цинка и меди получают сернистые газы. На основе сернистых газов получают серную кислоту, с помощью которой на основе привозных апатитов Кольского п-ова производят фосфатные удобрения.

Медь вместе с никелем производится в Норильске на базе Танахского месторождения.

Казахстан. Джезказган, Коунрад, Саяк (Джезказганская область), Бозшакуль (в Павлодарской области).

Медеплавильные заводы – Балхаш, Джезказган. Иртышский в г. Глубокое (Восточно-Казахстанская область) использует полиметаллические и медно-никелевые руды.

Узбекистан. Алмалык – медеплавильный завод + месторождение.

Никеле -кобальтовая промышленность (производство никеля).

Она тесно связана с источниками сырья из-за низкого содержания металла в руде. В России – два типа руд:

сульфидные (медно-никелевые) – Кольский полуостров (г. Никель), Норильск

окисленные руды на Урале

Предприятия:

Урал – Реж (северней Екатеринбурга), Верхний Уфалей (севернее Челябинска), Орск

Норильск

Мончегорск, “Североникель” (используются руды Собелевского месторождения) - Мурманская область

Свинцово-цинковая промышленность.

Она использует полиметаллические руды. В целом приурочена к руде. Свинцово-цинковые концентраты обладают высоким содержанием полезного компонента (до 62%), а, стало быть, транспортабельны, поэтому обогащение и металлургический передел отрываются друг от друга в отличие от медной промышленности. Так, производство цинка в Челябинске основано на привозных концентратах из Восточной Сибири и Дальнего Востока.

Свинцово-цинковая промышленность выделяется утилизацией отходов в химических целях. Путем электролиза раствора сернокислого цинка получают серную кислоту, которую можно также производить из сернистых газов, получаемых при обжиге цинковых концентратов. Месторождения:

Садонское (Северная Осетия)

Салаир (Кемеровская область)

Нерчинские месторождения (Читинская область)

Дальнегорское (Приморский край)

Предприятия:

Совместное производство свинца и цинка на местном месторождении предприятие “Садонское” в г. Владикавказ

Производство цинка из привозных концентратов – Челябинск (дешевая электроэнергия - ГРЭС), Белово (на основе Салаирского месторождения). Перевозки на дальние расстояния возможны из-за высокого содержания цинка в концентрате – до 62%. Завозится сырье из Нерчинского месторождения

Производство металлического свинца – Дальнегорск (Приморский край)

Казахстан. Месторождения:

Заряновское (В-К область)

Лениногорское (В-К область)

Тэкэли (Талды-Курганская область)

Ачисай (Чимкентская область)

Предприятия:

Совместное производство свинца и цинка – Лениногорск (В-К область), Усть-Каменогорск (В-К область)

Производство свинца – Чимкент

Украина. Производство цинка из привозных Садонских концентратов – Константиновка. Донбасс - электроэнегия

Киргизия. Актюз – добыча и обогащение полиметаллических руд

Таджикистан. Кансай – добыча и обогащение руд

Оловодобывающая промышленность.

Месторождения:

Шерловская гора (Читинская область)

Хабчеранга (Читинская область)

ЭСЕ-Хайя – в бассейне р. Лена (республика Саха)

Облучия (Еврейская автономная область)

Солнечный (Комсомольск-на-Амуре)

Кавалерово (Хрустальное) – Приморский край

Оловодобывающая промышленность разобщена по стадиям технологического процесса. Металлургический передел не связан с источниками сырья. Он ориентируется на районы потребления готовой продукции : Москва, Подольск, Кольчугино (север Владимирской области), Санкт- Петербург или расположены на путях следования концентратов : Новосибирск. Это обусловлено тем, что добыча сырья рассредоточена по мелким месторождениям, а концентраты обладают большой транспортабельностью (содержание концентрата – до 70%).

Металлургия легких металлов (алюминий, титан, магний).

Алюминиевая промышленность.

Производство алюминия распадается на два цикла :

получение глинозема (окись алюминия). Одновременно получают соду, цемент, т. е. происходит комбинирование химической промышленностью с производством стройматериалов. Производство глинозема, будучи материалоемким производством, тяготеет к сырью.

Около 70 элементов таблицы Д. И. Менделеева составляют цветные металлы, без которых немыслимо развитие отраслей промышленности. Цветные металлы широко различаются как по свойствам, так и по способам получения. Так, галлий и цезий имеют температуры плавления 29,8 и 28,5 °С соответственно, т. е. их можно расплавить в руке, а вольфрам плавится при температуре 3400 °С. Литий, имея плотность 0,53 г/см 3 , не тонет ни в бензине, ни в керосине, а плотность тантала составляет 26,6 г/см 3 . Для производства цветных металлов применяются пирометаллургия, гидрометаллургия, электролиз, как водных растворов, так и расплавленных солей.

Все цветные металлы делят на 5 групп:

1. Тяжёлые цветные металлы – это металлы, плотность которых превышает 7 г/см 3 . Типичные представители: медь (8,94 г/см 3), никель (8,92 г/см 3), свинец (11,34 г/см 3), цинк (7,14 г/см 3), олово (7,3 г/см 3) и др.

2. Легкие цветные металлы – алюминий (2,7 г/см 3), магний (1,74 г/см 3), кальций (1,55 г/см 3), барий (3,75 г/см 3), натрий (0,97 г/см 3), калий (0,86 г/см 3) и др.

3. Благородные металлы – золото, серебро, платина и и металлы платиновой группы.

4. Редкие металлы – это металлы, Кларк которых составляет 10 -10 (кларки элементов – числовые оценки среднего содержания химических элементов в земной коре, гидросфере, атмосфере. Введен А. Е. Ферсманом в честь американского геохимика Ф. У. Кларка). Типичные представители этой группы металлов:: титан, индий, рений, галлий, волфрам, литий, молибден и др.

5. Полупроводниковые металлы: селен, мышьяк, сурьма, германий и др.

Следует отметить, что приведенное деление условное. Так, например, титан и литий могут быть отнесены к легким металлам, а практически все полупроводниковые металлы – к редким.

2.1. Производство меди /Кнорозов, 1974 - с. 69/

Медь - один из важнейших металлов, относится к I – й группе Периодической системы; порядковый номер 29; атомная масса – 63,546; плотность – 8,92 г/см 3 . температура плавления – 1083 °С; температура кипения – 2595 °С. По электро­проводности она несколько уступает лишь серебру и является главным проводниковым материалом в элект­ро- и радиотехнике, потребляющих 40…50 % всей меди. Почти во всех областях машиностроения используются медные сплавы - латуни и бронзы. Медь как легирую­щий элемент входит в состав многих алюминиевых и других сплавов.

Мировое производство меди в капиталистических странах около 6-7 млн. т, в том числе вторичной меди около 2 млн. т. В СССР выплавка меди за каждое пя­тилетие увеличивался на 30…40 %.

Медные руды. Медь встречается в природе главным образом в виде сернистых соединений CuS (ковеллин), Cu 2 S (халькозин) в со­ставе сульфидных руд (85…95 % запасов), реже в виде окисных соединений Сu 2 О (куприт), углекислых соединений СuСО 3 · Сu(ОН) 2 - малахит 2СuСО 3 · Сu(ОН) 2 - азурит и само­родной металлической меди (очень редко). Окисные и углекислые соединения трудно поддаются обогащению и перерабатываются гидрометаллургическим способом.



Наибольшее промышленное значение в СССР имеют сульфидные руды, из которых получают около 80 % всей меди. Самыми распространенными сульфидными рудами являются медный колчедан, медный блеск и др.

Все медные руды являются бедными и обычно содер­жат 1…2 %, иногда меньше 1 % меди. Пустая порода, как правило, состоит из песчаников, глины, известняка, сульфидов железа и т. п. Многие руды являются ком­плексными - полиметаллическими и содержат, кроме меди, никель, цинк, свинец и другие ценные элементы в виде окислов и соединений.

Примерно 90 % первичной меди получают пирометаллургическим способом; около 10 %-гидрометаллур­гическим способом.

Гидрометаллургический способ состоит в извлечении меди путем ее выщелачивания (например, слабыми рас­творами серной кислоты) и последующего выделения металлической меди из раствора. Этот способ, применя­емый для переработки бедных окисленных руд, не по­лучил широкого распространения в нашей промышлен­ности.

Пирометаллургический способ состоит в получении меди путем ее выплавки из медных руд. Он включает обогащение руды, ее обжиг, плавку на полупродукт - штейн, выплавку из штейна черной меди, ее рафиниро­вание, т. е. очистку от примесей (рис. 2.1).

Рис. 2.1. Упрощенная схема пирометаллургического производства меди

Наиболее широко для обогащения медных руд при­меняется метод флотации. Флотация основана на раз­личном смачивании водой металлсодержащих частиц и частиц пустой породы (рис. 2.2).

Рис. 2.2. Схема флотации:

а – принципиальная схема механической флотационной машины (вариант);

б – схема всплывания частиц; 1 – мешалка с лопастями; 2 – перегородка;

3 – схема минерализованной пены; 4 – отверстие для удаления хвосты

(пустой породы); I – зона перемешивания и аэрации.

Обогащение медных руд . Бедные медные руды под­вергают обогащению для получения концентрата, содер­жащего 10…35 % меди. При обогащении комплексных руд возможно извлечение из них и других ценных эле­ментов.

В ванну флотационной машины подают пульпу - суспензию из воды, тонкоизмельченной руды (0,05…0,5 мм) и специальных реагентов, образующих на поверхности металлсодержащих частиц пленки, не сма­чиваемые водой. В результате энергичного перемеши­вания и аэрации вокруг этих частиц возникают пузырь­ки воздуха. Они всплывают, извлекая с собой металл­содержащие частицы, и образуют на поверхности ванны слой пены. Частицы пустой породы, смачиваемые водой, не всплывают и оседают на дно ванны.

Из пены фильтруют частицы руды, сушат их и полу­чают рудный концентрат, содержащий 10…35 % меди. При переработке комплексных руд применяют селектив­ную флотацию, последовательно выделяя металлсодер­жащие частицы различных металлов. Для этого подби­рают соответствующие флотационные реагенты.

Обжиг. Рудные концентраты, достаточно богатые медью, плавят на штейн «сырыми» - без предваритель­ного обжига, что снижает потери меди (в шлаке - при плавке, унос - с пылью при обжиге); основной недоста­ток: при плавке сырых концентратов не утилизируется сернистый газ SO 2 , загрязняющий атмосферу. При об­жиге более бедных концентратов удаляется избыток се­ры в виде SO 2 , который используется для производства серной кислоты. При плавке получают достаточно богатый медью штейн, произво­дительность плавильных пе­чей увеличивается в 1,5…2 раза.

Обжиг производят в вер­тикальных многоподовых цилиндрических печах (диа­метр 6,5…7,5 м, высота 9…11 м), в которых измельчен­ные материалы постепенно перемещаются механически­ми гребками с верхнего пер­вого пода на второй - ниже расположенный, затем на третий и т. д. Необходимая температура (850 °С) обес­печивается в результате го­рения серы (CuS, Cu 2 S и др.). Образующийся сернистый газ SO 2 направляется для производства серной кислоты.

Производительность печей невысокая - до 300 т ших­ты в сутки, безвозвратный унос меди с пылью около 0,5 %.

Новым, прогрессивным способом является обжиг в кипящем слое (рис. 2.3).

Сущность этого способа состо­ит в том, что мелкоизмельченные частицы сульфидов окисляются при 600…700 °С кислородом воздуха, посту­пающего через отверстия в подине печи. Под давлением воздуха частицы обжигаемого материала находятся во взвешенном состоянии, совершая непрерывное движение и образуя «кипящий» («псевдоожиженный») слой. Обожженный материал «переливается» через порог пе­чи. Отходящие сернистые газы очищают от пыли и на­правляют в сернокислотное производство. При таком обжиге резко повышается интенсивность окисления; производительность в несколько раз больше, чем в много­подовых печах.

Плавка на штейн . Плавку на штейн концентрата наиболее часто проводят в пламенных печах, работаю­щих на пылевидном, жидком или газообразном топливе. Такие печи имеют длину до 40 м, ширину до 10 м, пло­щадь подины до 250 м 2 и вмещают 100 т и более пере­плавляемых материалов. В рабочем пространстве печей развивается температура 1500…1600 °С.

При плавке на подине печи постепенно скапливается расплавленный штейн - сплав, состоящий в основном из сульфида меди Cu 2 S и сульфида железа FeS. Он обычно содержит 20…60 % Сu, 10…60 % Fe и 20…25 % S. В расплавленном состоянии (t Пл -950…1050 °C) штейн поступает на переработку в черновую медь.

Плавку концентратов производят также в электропечах, в шахт­ных печах и другими способами. Технически совершенная плавка в электропечах (ток проходит между электродами в слое шлака) на­шла ограниченное применение из-за большого расхода электроэнергии. Медные кусковые руды с повышенным содержанием меди и серы часто подвергают медносерной плавке в вертикальных шахтных пе­чах с воздушным дутьем. Шихта состоит из руды (или брикетов), кокса и других материалов. Выплавляемый бедный штейн с 8…15 % Сu обогащают повторной плавкой до 25…4 % Сu, удаляя избыток железа. Эта плавка экономически выгодна, так как из печных газов улавливают до 90 % элементарной серы руды.

Черновую медь вы­плавляют путем продув­ки расплавленного штей­на воздухом в горизон­тальных цилиндрических конверторах (рис. 2.4) с основной футеровкой (магнезит) с массой плавки до 100 т. Конвер­тор установлен на опор­ных роликах и может по­ворачиваться в требуемое положение. Воздушное дутье подается через 40- 50 фурм, расположенных вдоль конвертора.

Через горловину конвертора заливают рас­плавленный штейн. При этом конвертор поворачивают так, чтобы не были залиты воздушные фурмы. На поверхность штейна через горловину или специальное пневматическое устройство загружают песок - флюс для ошлакования окислов железа, образующихся при про­дувке. Затем включают воздушное дутье и поворачивают конвертор в рабочее положение, когда фурмы находятся ниже уровня расплава. Плотность штейна (5г/см 3) зна­чительно меньше удельного веса меди (8,9 г/см 3). Поэто­му в процессе плавки штейн доливают несколько раз: пока не будет использована вся емкость конвертора, рассчитанная на выплавляемую медь. Продувка воздухом продолжается до 30 ч. Процесс выплавки черновой меди из штейна делится на два периода.


В первом периоде происходит окисление FeS кис­лородом воздушного дутья по реакции

2FeS + ЗО 2 = 2FeO + 2SO 2 + Q.

Образующаяся закись железа FeO ошлаковывается кремнеземом SiO 2 флюса:

2FeO + SiO 2 = SiO 2 ∙2FeO + Q.

По мере необходимости образующийся железистый шлак сливают через горловину (поворачивая конвер­тор), доливают новые порции штейна, загружают флюс и продолжают продувку. К концу первого периода же­лезо удаляется почти полностью. Штейн состоит в ос­новном из Cu 2 S и содержит до 80 % меди.

Шлак содержит до 3 % Сu и его используют при плав­ке на штейн.

Во втором периоде создаются благоприятные усло­вия для протекания реакций

2Cu 2 S + ЗО 2 = 2Cu 2 O + 2SO 2 +Q;

Cu 2 S + 2Cu 2 O = 6Cu + SO 2 - Q,

приводящих к восстановлению меди.

В результате плавки в конверторе получается черно­вая медь. Она содержит 1,5…2 % примесей (железа, ни­келя, свинца и др.) и не может быть использована для технических надобностей. Плавку меди выпускают из конвертора через горловину, разливают на разливочных машинах в слитки (штыки) или плиты и направляют на рафинирование.

Рафинирование меди - ее очистку от примесей - проводят огневым и электролитическим способом.

Огневое рафинирование ведут в пламенных печах емкостью до 400 т. Его сущность состоит в том, что цинк, олово и другие примеси легче окисляются, чем са­ма медь, и могут быть удалены из нее в виде окислов. Процесс рафинирования состоит из двух периодов - окислительного и восстановительного.

В окислительном периоде примеси частично окисляются уже при расплавлении меди. После полного расплавления для ускорения окисления медь продувают воздухом, подавая его через погруженные в жидкий ме­талл стальные трубки. Окислы некоторых примесей (SbO 2 , PbO, ZnO и др.) легко возгоняются и удаляются с печными газами. Другая часть примесей образует окис­лы, переходящие в шлак (FeO, Аl 2 О з, Si0 2). Золото и серебро не окисляются и остаются растворенными в меди.

В этот период плавки происходит также и окисление меди по реакции 4Cu+O 2 =2Cu 2 O.

Задачей восстановительного периода являет­ся раскисление меди, т. е. восстановление Сu 2 0, а так­же дегазация металла. Для его проведения окислитель­ный шлак полностью удаляют. На поверхность ванны насыпают слой древесного угля, что предохраняет ме­талл от окисления. Затем проводят так называемое дразнение меди. В расплавленный металл погружают сначала сырые, а затем сухие жерди (шесты). В результате су­хой перегонки древесины выделяются пары воды и га­зообразные углеводороды, они энергично перемешивают металл, способствуя удалению растворенных в нем газов (дразнение на плотность).

Газообразные углеводороды раскисляют медь, на­пример, по реакции 4Cu 2 O+CH 4 =8Cu+CO 2 +2H 2 O (дразнение на ковкость). Рафинированная медь содер­жит 0,3…0,6 % Sb и других вредных примесей, иногда до 0,1 % (Au+Ag).

Готовую медь выпускают из печи и разливают в слитки для прокатки или в анодные пластины для последующего электролитического рафинирования. Чистота меди после огневого рафинирования составляет 99,5 … 99,7 %.

Электролитическое рафинирование обеспечивает по­лучение наиболее чистой, высококачественной меди. Электролиз проводят в ваннах из железобетона и дере­ва, внутри футерованных листовым свинцом или винипластом. Электролитом служит раствор сернокислой ме­ди (CuSO 4) и серной кислоты, нагретый до 60…65 °С, Анодами являются пластины размером 1х1 м толщиной 40…50 мм, отлитые из рафинируемой меди. В качестве катодов используют тонкие листы (0,5…0,7 мм), изго­товленные из электролитической меди.

Аноды и катоды располагают в ванне попеременно; в одной ванне помещают до 50 анодов. Электролиз ве­дут при напряжении 2…3 В и плотности тока 100… 150 А/м 2 .

При пропускании постоянного тока аноды постепенно растворяются, медь переходит в раствор в виде ка­тионов Си 2+ . На катодах происходит разрядка катионов Cu 2+ +2e → Cu и выделяется металлическая медь.

Анодные пластины растворяются за 20…30 суток. Катоды наращивают в течение 10…15 суток до массы 70…140 кг, а затем извлекают из ванны и заменяют но­выми.

При электролизе на катоде выделяется и растворяет­ся в меди водород, вызывающий охрупчивание металла. В дальнейшем катодную медь переплавляют в плавиль­ных печах и разливают в слитки для получения листов, проволоки и т. п. При этом удаляется водород. Расход электроэнергии на 1 т катодной меди составляет 200…400 кВт · ч. Электролитическая медь имеет чистоту 99,95 %. Часть примесей оседает на дне ванны в виде шлама, из которого извлекают золото, серебро и некото­рые другие металлы.

2.2. Производство алюминия /Солнцев, МиТКМ, с.44 /

В группу легких металлов, имеющих плотность меньше 5 г/см, входят Al, Mg, Ti, Be, Ca, В, Zn, К и др. Наибольшее промышленное применение из них имеют алюминий, магний, титан.

Алюминий является самым распространенным металлом в земной коре. Он преимущественно встречается в виде соединений с кислородом и кремнием алюмосиликатов. Для получения алюминия используют руды, богатые глиноземом AI2O3. Чаще всего применяют бокситы, в которых содержится, %: Аl 2 О 3 40-60, Fе 2 О 3 15-30,SiO 2 5-15,ТiO 2 2-4 и гидратной влаги 10-15.

Технологический процесс производства алюминия состоит из трех этапов: извлечение глинозема из алюминиевых руд, электролиз расплавленного глинозема с получением первичного алюминия и его рафинирование. Извлечение глинозема обычно производят щелочным способом, применяемым в двух вариантах: мокром (метод Байера) и сухом.

При мокром методе бокситы сушат, измельчают и загружают в герметические автоклавы с концентрированной щелочью, где выдерживают в течение 2-3 ч при температуре 150…250 °С и давлении до 3 МПа. При этом протекают реакции взаимодействия гидрооксида алюминия с едким натром:

AI 2 O 3 + ЗН 2 О + 2NaOH=Na 2 O AI 2 O 3 + 4Н 2 О.

Раствор алюмината натрия Nа 2 О· А1 2 О в виде горячей пульпы идет на дальнейшую переработку. Оксиды железа, титана и другие примеси, не растворяющиеся в щелочах, выпадают в осадок-шлам.

Кремнезем также взаимодействует со щелочью и образует силикат натрия: SiO 2 + 2NaOH = Na 2 O SiO 2 + 4Н 2 О, который, в свою очередь, взаимодействуя с алюминатом натрия, выпадает в осадок, образуя нерастворимое соединение Na 2 O· AI 2 O 3 ·2SiO 2 ·2Н 2 О.

Пульпа после фильтрации и разбавления водой сливается в отстойник, где из алюминатного раствора выпадает в осадок гидроксид алюминия:

Na 2 O· AI 2 O 3 + 4Н 2 О = 2NaOH + 2A1 (ОН) 3 .

Гидроксид алюминия фильтруют и прокаливают при температуре до 1200 °С в трубчатых вращающихся печах. В результате получается глинозем:

2А1(ОН) 3 = AI 2 O 3 + ЗН 2 О.

Сухой щелочной способ или способ спекания состоит в совместном прокаливании при температурах 1200…1300 °С смеси боксита, соды и извести, приводящем к образованию спека, в котором содержится водорастворимый алюминат натрия:

AI 2 O 3 + Nа 2 СО 3 =Na 2 O · AI 2 O 3 + СО 2 .

Известь расходуется на образование нерастворимого в воде силиката кальция СаО SiO2. Алюминат натрия выщелачивают из спека горячей водой и полученный раствор продувают углекислотой:

Na 2 O AI 2 O 3 + ЗН 2 О + СО 2 =2А1(ОН) 3 +Nа 2 СО 3 .

Осадок промывают и прокаливают, получая глинозем, как и в предыдущем способе.

Алюминий получают электролизом глинозема, растворенного в расплавленном криолите Na 3 AlF 6 . Этот метод был предложен в 1886 г. одновременно Ч.Холлом в США и П.Эру во Франции и применяется до сих пор почти без изменений. Криолит получают в результате взаимо­действия плавиковой кислоты HF с гидроксидом алюминия с последую­щей нейтрализацей содой:6HF + А1(ОН) 3 =Н 3 АlF 6 + ЗН 2 О;

H 3 AIF 6 + ЗNа 2 СО 3 =2Na 3 AlF 6 + ЗН 2 О + СО 2 -

Электролиз осуществляют в алюминиевой ванне-электролизере, схема которого приведена на рис. 2.5.

Рис. 2.5. Схема электролизера для производства алюминия:

1 - катодные угольные бло­ки; 2 - огнеупорная футеровка; 3 - стальной кожух; 4 - угольные плиты; 5 - жидкий алюми­ний; 6 - металлические стержни с шинами; 7 - угольный анод; 8 - глинозем; 9 - жидкий элект­ролит; 10 - корка затвердевшего электролита; 11 - катодная токо-подводящая шина; 12 - фундамент

Ванна имеет стальной кожух прямоугольной формы, а ее стену и подину изготавливают из угольных блоков, теплоизолированных шамотным кирпичом. В футеровку подины вмонтированы стальные катодные шины, благодаря чему угольный корпус ванны является катодом электролизера. Анодами служат самообжигающиеся, вертикально расположенные угольные электроды, погруженные в расплав. При электролизе аноды постепенно сгорают и перемещаются вниз. По мере сгорания они наращиваются сверху жидкой анодной массой, из которой при нагреве удаляются летучие и происходит ее коксование. Электролит нагревается до рабочей температуры 930-950 °С. Глинозем, расходуемый в процессе электролиза, периодически загружают в ванну сверху. Благодаря охлаждению воздухом на поверхности образуется корка электролита. На боковой поверхности ванны образуется затвердевающий слой электролита (гарнисаж), пре­дохраняющий футеровку от разрушения и теплоизолирующий ванну.При высокой температуре глинозем AI 2 O 3 , растворенный в электролите, диссоциирует на ионы: А1 2 О 3 =2А1 3+ + O 2- На поверхности угольной подины, являющейся катодом, ионы восстанавливаются до металла: 2Al 3+ +6e=2al

По мере уменьшения содержания глинозема в электролите его периодически загружают в ванну электролизера. Жидкий алюминий скапливается на подине электролизера и периодически удаляется с помощью вакуумных ковшей.

Кислородные ионы разряжаются на угольном аноде: 3O 2- 6e= 3/2O 2 , окисляют анод, образуя СО и СО 2 , которые удаляются вентиляционными устройствами. Электролизные ванны соединяют последовательно в серии из 100-200 ванн.

Первичный алюминий, полученный в электролизной ванне, загрязнен примесями Si, Fe, неметаллическими включениями (AI 2 O 3 ,С), а также газами, преимущественно водородом. Для очистки алюминия его подвергают рафинированию либо хлорированием, либо электролитиче­ским способом.

Более чистый алюминий получают электролитическим рафинированием, где электролитом являются безводные хлористые и фтористые соли. В расплавленном электролите алюминий подвергают анодному растворению и электролизу. Электролитическим рафинированием получают алюминий чистотой до 99,996 %,потребляемый электрической, химической и пищевой промышленностью. Еще более чистый алюминий(99,9999 %)можно получить зонной плавкой. Этот способ дороже электролиза, мало производителен и применяется для изготовления

небольших количеств металла в тех случаях, когда необходима особая чистота, например для производства полупроводников.