При скольки замерзает соленая вода. При какой температуре замерзает морская вода? Фото и видео с экспериментами

Юным натуралистам всегда не дают покоя простые, казалось бы, вопросы. Вот при какой температуре обычно замерзает морская вода? Все знают, что нуля градусов недостаточно для превращения морской поверхности в хороший каток. Но при достижении какой температуры это происходит?

Из чего состоит морская вода?

Чем содержимое морей отличается от пресной воды? Разница не столь велика, но все же:

  • Гораздо больше солей.
  • Преобладают соли магния и натрия.
  • Незначительно отличается плотность, в пределах нескольких процентов.
  • На глубине может образовываться сероводород.

Основным компонентом морской воды, как бы предсказуемо это не звучало, является вода. Но в отличие от воды рек и озёр, в ней содержится большое количество хлоридов натрия и магния .

Солёность оценивается в 3.5 промилле, но чтобы было более понятно - в 3.5 тысячных процента от общего состава.

И даже эта, не самая внушительная цифра, обеспечивает воде не только специфический вкус, но и делает её непригодной для питья. Абсолютных противопоказаний нет, морская вода не является ядом или токсическим веществом и от пары глотков ничего страшного не случится. О последствиях можно будет говорить, если человек хотя бы на протяжении дня Также в состав морской воды входят:

  1. Фтор.
  2. Бром.
  3. Кальций.
  4. Калий.
  5. Хлор.
  6. Сульфаты.
  7. Золото.

Правда, в процентном соотношении всех этих элементов намного меньше, чем солей.

Почему нельзя пить морскую воду?

Мы уже вскользь коснулись этой темы, давайте рассмотрим её чуть подробней. Вместе с морской водой в организм поступают два иона - магния и натрия.

Натрий

Магний

Участвует в поддержании водно-солевого баланса, один из основных ионов наряду с калием.

Основное воздействие идёт на центральную нервную систему.

При увеличении количества Na в крови происходит выход жидкости из клеток.

Очень медленно выводится из организма.

Нарушаются все биологические и биохимические процессы.

Переизбыток в организме приводит к поносу, усугубляющему дегидратацию.

Почки человека не способны справиться с таким количеством соли в организме.

Возможно развитие нервных расстройств, неадекватное состояние.

Нельзя сказать, что человеку не нужны все эти вещества, но потребности всегда укладываются в определённые рамки. Выпив несколько литров такой воды, вы уйдёте слишком далеко за их пределы.

Впрочем, на сегодняшний день острая необходимость в употреблении морской воды может возникнуть разве что у жертв кораблекрушений.

От чего зависит соленость морской воды?

Увидев чуть выше цифру 3.5 промилле , вы могли подумать, что это константа для любой морской воды на нашей планете. Но всё не так просто, солёность зависит от региона. Так уж вышло, что чем севернее расположен регион, тем больше это значение.

Юг же наоборот может похвастаться не такими уж солёными морями и океанами. Конечно же, во всех правилах есть свои исключения. Уровень содержания солей в морях обычно чуть ниже, чем в океанах.

С чем вообще может быть связано географическое деление? Неизвестно, исследователи принимают его как данность, есть и всё. Возможно, ответ следует искать в более ранних периодах развития нашей планеты. Не в те времена, когда зарождалась жизнь - значительно раньше.

Нам уже известно, что солёность воды зависит от наличия в ней:

  1. Хлоридов магния.
  2. Хлоридов натрия.
  3. Прочих солей.

Возможно, в некоторых участках земной коры залежи этих веществ были несколько больше, чем в соседних регионах. С другой стороны, никто не отменял морские течения, рано или поздно общий уровень должен был уровняться.

Так что, скорее всего, небольшая разница связана с климатическими особенностями нашей планеты. Не самое безосновательное мнение, если вспомнить о морозах и учесть что именно вода с большим содержанием соли замерзает медленней.

Опреснение морской воды.

Касательно опреснения каждый слышал хоть немного, некоторые сейчас даже фильм «Водный мир» вспомнят. Насколько это реально, поставить в каждый дом по одному такому портативному опреснителю и навсегда забыть для человечества о проблеме питьевой воды? Всё ещё фантастика, а не наступившая реальность.

Всё дело в затраченной энергии, ведь для эффективной работы необходимы огромные мощности, никак не меньше атомного реактора. По такому принципу работает опреснительный завод в Казахстане. Идею подавали и в Крыму, вот только мощности севастопольского реактора не хватило для таких объёмов.

Полвека назад, до многочисленных ядерных катастроф, ещё можно было предположить, что мирный атом войдёт в каждый дом. Даже лозунг такой был. Но уже сейчас понятно, что никакого использования ядерных микро-реакторов:

  • В бытовой технике.
  • На промышленных предприятиях.
  • В конструкциях автомобилей и самолётов.
  • Да и вообще в городской черте.

В ближайшее столетие не предвидится. Наука может сделать очередной скачок и удивить нас, но пока это всё лишь фантазии и надежды беспечных романтиков.

При какой температуре может замерзнуть морская вода?

А вот на главный вопрос ответа пока не было. Уже узнали, что соль замедляет замерзание воды, выходит море покроется коркой льда не при нуле, а при минусовой температуре. Но насколько должны уйти в минус показатели термометров, чтобы выйдя из своих домов, жители прибрежных районов не услышали привычный шум прибоя?

Для определения этого значения есть специальная формула, сложная и понятная только для специалистов. Зависит она от основного показателя - уровня солёности . Но раз у нас есть среднее значение по этому показателю, можем ли мы и среднюю температуру замерзания найти? Да, конечно.

Если у вас нет необходимости высчитывать всё до сотой, для конкретно взятого региона, запомните температуру в -1.91 градус .

Может показаться, что разница не так уж велика, всего два градуса. Но во время сезонных колебаний температуры это может сыграть огромную роль там, где термометр падает не ниже 0. Было бы всего на 2 градуса прохладнее, обитатели той же Африки или Южной Америки смогли бы увидеть лёд у берега, а так - увы. Впрочем, не думаем, что они сильно огорчаются от такой потери.

Несколько слов о мировом океане.

А как обстоит дело с океанами, запасами пресной воды, уровнем загрязнённости? Попробуем выяснить:

  1. Океаны всё ещё стоят на месте, ничего с ними не случилось. В последние десятилетия наблюдают подъём уровня воды. Возможно это цикличное явление, а может действительно ледники тают.
  2. Пресной воды тоже более чем хватает, панику насчёт этого поднимать рановато. Если случится очередной всемирный конфликт, на этот раз с применением ядерного оружия, может и будем как в «Безумном Максе» молиться на спасительную влагу.
  3. Последний пункт очень любят защитники природы. И спонсирования добиться не так уж сложно, конкуренты всегда оплатят чёрный пиар, особенно когда речь идёт о нефтедобывающих компаниях. А ведь именно они наносят основной урон водам морей и океанов. Контролировать добычу нефти и внештатные ситуации не всегда представляется возможным, а последствия каждый раз катастрофичны.

Но у мирового океана есть одно преимущество над человечеством. Он постоянно обновляется, а его реальные возможности по самоочищению оценить очень сложно. Скорее всего он сможет пережить человеческую цивилизацию и увидит её закат во вполне приемлемом состоянии. Ну а дальше у воды будут миллиарды лет на то, чтобы очиститься от всех «подарочков».

Даже сложно представить, кому надо знать, при какой температуре замерзает морская вода. Общеобразовательный факт, но кому он действительно пригодится на практике - это вопрос.

Видео-эксперимент: замораживаем морскую воду

Если вы заметили, то в море вода замерзает при температуре значительно ниже нуля градусов. Почему так происходит? Все зависит от концентрации в ней соли. Чем ее больше, тем ниже температура замерзания. В среднем, увеличение солености воды на два промилле понижает температуру ее замерзания на одну десятую градуса. Вот и посудите сами, какой должна быть температура окружающего воздуха, чтобы на поверхности моря, с соленостью воды 35 промилле, образовался тонкий слой льда. Как минимум, должно быть два градуса мороза.

То же Азовское море, с соленостью воды 12 промилле, замерзает при температуре минус 0,6 градуса. При этом примыкающий к нему Сиваш остается незамерзшим. Все дело в том, что соленость его воды составляет 100 промилле, а значит, для образования здесь льда необходимо не менее шести градусов мороза. Чтобы льдом покрылась поверхность Белого моря, где уровень солености воды достигает 25 промилле, нужно чтобы температура понизилась до минус 1,4 градуса.

Самое удивительное в том, что в охлажденной до минус одного градуса морской воде, снег не таит. Он просто продолжает в ней плавать, до тех пор, пока не превратится в кусок льда. Но попадая в охлажденную пресную воду, он тут же таит.

Процесс замерзания морской воды имеет свои особенности. Вначале начинают формироваться первичные ледяные кристаллы, которые невероятно похожи на тоненькие прозрачные иглы. Соль в них отсутствует. Она выдавливается из кристаллов и остается в воде. Если собрать такие иголки, и растопить в какой — нибудь посуде, то мы получим пресную воду.

Каша из ледяных иголок, внешне похожая на огромное жирное пятно, плавает на поверхности моря. Отсюда и ее оригинальное название – сало. При дальнейшем понижении температуры сало смерзается, образуя гладкую и прозрачную ледяную корку, которая носит название нилас. В отличие от сала, нилас содержит соль. Она появляется в нем в процессе смерзания сала и захватывания иголками, капелек морской воды. Это довольно хаотичный процесс. Именно поэтому соль в морском льде распределяется неравномерно, как правило, в виде отдельных вкраплений.

Ученые выяснили, что количество соли в морском льде зависит от температуры окружающего воздуха, которая имела место в момент его образования. При небольшом морозе скорость образования ниласа низкая, иглы захватывают мало морской воды, отсюда и соленость льда невысокая. При большом морозе ситуация прямо противоположная.

При таянии морского льда из него, в первую очередь, выходит соль. В результате, он постепенно становится пресным.

В таблице представлены теплофизические свойства раствора хлористого кальция CaCl 2 в зависимости от температуры и концентрации соли: удельная теплоемкость раствора, теплопроводность, вязкость водных растворов, их температуропроводность и число Прандтля. Концентрация соли CaCl 2 в растворе от 9,4 до 29,9 %. Температура, при которой приведены свойства определяется содержанием соли в растворе и находится в диапазоне от -55 до 20°С.

Хлорида кальция CaCl 2 может не замерзать до температуры минус 55°С . Для достижения этого эффекта концентрация соли в растворе должна быть 29,9%, а его плотность составит величину 1286 кг/м 3 .

При увеличении концентрации соли в растворе увеличивается не только его плотность, но и такие теплофизические свойства, как динамическая и кинематическая вязкость водных растворов, а также число Прандтля. Например, динамическая вязкость раствора CaCl 2 с концентрацией соли 9,4 % при температуре 20°С равна 0,001236 Па·с, а при увеличении концентрации хлорида кальция в растворе до 30% его динамическая вязкость увеличивается до значения 0,003511 Па·с.

Следует отметить, что на вязкость водных растворов этой соли наиболее сильное влияние оказывает температура. При охлаждении раствора хлорида кальция с 20 до -55°С его динамическая вязкость может увеличиться в 18 раз, а кинематическая — в 25 раз.

Даны следующие теплофизические свойства раствора CaCl 2 :

  • , кг/м 3 ;
  • температура замерзания °С;
  • динамическая вязкость водных растворов, Па·с;
  • число Прандтля.

Плотность раствора хлористого кальция CaCl 2 в зависимости от температуры

В таблице указаны значения плотности раствора хлористого кальция CaCl 2 различной концентрации в зависимости от температуры.
Концентрация хлорида кальция CaCl 2 в растворе от 15 до 30 % при температуре от -30 до 15°С. Плотность водного раствора хлористого кальция увеличивается при снижении температуры раствора и увеличением в нем концентрации соли.

Теплопроводность раствора CaCl 2 в зависимости от температуры

В таблице представлены значения теплопроводности раствора хлористого кальция CaCl 2 различной концентрации при отрицательных температурах.
Концентрация соли CaCl 2 в растворе от 0,1 до 37,3 % при температуре от -20 до 0°С. По мере роста концентрации соли в растворе его теплопроводность снижается.

Теплоемкость раствора CaCl 2 при 0°С

В таблице представлены значения массовой теплоемкости раствора хлористого кальция CaCl 2 различной концентрации при 0°С. Концентрация соли CaCl 2 в растворе от 0,1 до 37,3 %. Следует отметить, что с повышением концентрации соли в растворе, его теплоемкость снижается.

Температура замерзания растворов солей NaCl и CaCl 2

В таблице приведена температура замерзания растворов солей хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации соли. Концентрация соли в растворе от 0,1 до 37,3 %. Температура замерзания солевого раствора определяется концентрацией соли в растворе и для хлорида натрия NaCl может достигать значения минус 21,2°С для эвтектического раствора.

Необходимо отметить, что раствор хлористого натрия может не замерзать до температуры минус 21,2°С , а раствор хлористого кальция не замерзает при температуре до минус 55°С .

Плотность раствора NaCl в зависимости от температуры

В таблице представлены значения плотности раствора хлористого натрия NaCl различной концентрации в зависимости от температуры.
Концентрация соли NaCl в растворе от 10 до 25 %. Значения плотности раствора указаны при температуре от -15 до 15°С.

Теплопроводность раствора NaCl в зависимости от температуры

В таблице даны значения теплопроводности раствора хлористого натрия NaCl различной концентрации при отрицательных температурах.
Концентрация соли NaCl в растворе от 0,1 до 26,3 % при температуре от -15 до 0°С. По данным таблицы видно, что теплопроводность водного раствора хлорида натрия снижается по мере роста концентрации соли в растворе.

Удельная теплоемкость раствора NaCl при 0°С

В таблице представлены значения массовой удельной теплоемкости водного раствора хлористого натрия NaCl различной концентрации при 0°С. Концентрация соли NaCl в растворе от 0,1 до 26,3 %. По данным таблицы видно, что с повышением концентрации соли в растворе, его теплоемкость снижается.

Теплофизические свойства раствора NaCl

В таблице представлены теплофизические свойства раствора хлористого натрия NaCl в зависимости от температуры и концентрации соли. Концентрация хлорида натрия NaCl в растворе от 7 до 23,1 %. Необходимо отметить, что при охлаждении водного раствора хлорида натрия его удельная теплоемкость меняется слабо, теплопроводность снижается, а значение вязкости раствора увеличивается.

Даны следующие теплофизические свойства раствора NaCl :

  • плотность раствора, кг/м 3 ;
  • температура замерзания °С;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • коэффициент теплопроводности, Вт/(м·град);
  • динамическая вязкость раствора, Па·с;
  • кинематическая вязкость раствора, м 2 /с;
  • коэффициент температуропроводности, м 2 /с;
  • число Прандтля.

Плотность растворов хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации при 15°С

В таблице представлены значения плотности растворов хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации. Концентрация соли NaCl в растворе от 0,1 до 26,3 % при температуре раствора 15°С. Концентрация хлорида кальция CaCl 2 в растворе находится в диапазоне от 0,1 до 37,3 % при его температуре 15°С. Плотность растворов хлорида натрия и кальция растет при увеличении содержания в нем соли.

Коэффициент объемного расширения растворов хлористого натрия NaCl и кальция CaCl 2

В таблице даны значения среднего коэффициента объемного расширения водных растворов хлористого натрия NaCl и кальция CaCl 2 в зависимости от концентрации и температуры.
Коэффициент объемного расширения раствора соли NaCl указан при температуре от -20 до 20°С.
Коэффициент объемного расширения раствора хлорида CaCl 2 представлен при температуре от -30 до 20°С.

Источники:

  1. Данилова Г. Н. и др. Сборник задач по процессам теплообмена в пищевой и холодильной промышленности. М.: Пищевая промышленность, 1976.- 240 с.