Предварительная растяжка п образного компенсатора тепловой сети. Сильфонный осевой компенсатор

4.1. Монтаж трубопроводов должен быть выполнен специализированны­ми монтажными организациями, при этом технология монтажа должна обе­спечивать высокую эксплуатационную надежность работы трубопроводов.

4.2. Детали, .элементы трубопроводов (компенсаторы, грязевики, изоли­рованные трубы, а также узлы трубопроводов и другие изделия) должны быть изготовлены централизованно (в заводских условиях, цехах, мастер­ских) в соответствии со стандартами, техническими условиями и проектной документацией.

4.3. У кладку трубопроводов в траншею, канал или на надземные конст­рукции следует производить по технологии, предусмотренной проектом производства работ и исключающей возникновение остаточных деформаций в трубопроводах, нарушение целостности противокоррозионного покрытия и тепловой изоляции путем применения соответствующих монтажных при­способлений, правильной расстановки одновременно работающих грузо­подъемных машин и механизмов.

Конструкция крепления монтажных приспособлений к трубам должна обеспечивать сохранность покрытия и изоляции трубопроводов.

4.4. Прокладку трубопроводов в пределах щитовой опоры необходимо выполнять с применением труб максимальной поставочной длины. При этом оварные поперечные швы трубопроводов должны быть, как правило, расположены симметрично относительно щитовой опоры.

4.5. Укладку труб диаметром свыше 100 мм с продольным или спираль­ным швом следует производить со смещением этих швов не менее чем на 100 мм. При укладке труб диаметром менее 100 мм смещение швов долж­но быть не менее трехкратной толщины стенки трубы.

Продольные швы должны находиться в пределах верхней половины ок­ружности укладываемых труб.

Крутоизогнутые и штампованные отводы трубопроводов разре­ша­ет­ся сваривать между собой без прямого участка.

Приварка патрубков и отводов в сварные стыки и гнутые элементы не допускается.

4.6. При монтаже трубопроводов подвижные опоры и подвески должны быть смещены относительно проектного положения на расстояние, указан­ное в рабочих чертежах, в сторону, обратную перемещению трубопровода в рабочем состоянии.

При отсутствии данных в рабочих чертежах подвижные опоры и подвес­ки горизонтальных трубопроводов должны быть смещены с учетом по­правки на температуру наружного воздуха при монтаже на следующие вели­чины:

скользящие опоры и элементы крепления подвесок к трубе - на полови­ну теплового удлинения трубопровода в месте крепления;

катки катковых опор - на четверть теплового удлинения.

4.7. Пружинные подвески при монтаже трубопроводов необходимо за­тягивать в соответствии с рабочими чертежами.

Во время выполнения гидравлических испытаний паропроводов диамет­ром 400 мм и более следует устанавливать в пружинных подвесках разгру­жающее устройство.

4.8. Трубопроводную арматуру надлежит монтировать в закрытом со­стоянии. Фланцевые и приварные соединения арматуры должны быть выполнены без натяга трубопроводов.

Отклонение от перпендикулярности плоскости фланца, приваренного к трубе, по отношению к оси трубы не должно превышать 1 % наружного диаметра фланца, но быть не более 2 мм по верху фланца.

4.9. Сильфонные (волнистые) и сальниковые компенсаторы следует монтировать в собранном виде.

При подземной прокладке тепловых сетей установка компенсаторов в проектное положение допускается только после выполнения предваритель­ных испытаний трубопроводов на прочность и герметичность, обратной за­сыпки трубопроводов бесканальной прокладки, каналов, камер и щитовых опор.

4.10. Осевые сильфонные и сальниковые компенсаторы следует уста­навливать на трубопроводы без перелома осей компенсаторов и осей тру­бопроводов.

Допускаемые отклонения от проектного положения присоединительных патрубков компенсаторов при их установке и сварке должны быть не более указанных в технических условиях на изготовление и поставку компенса­торов.

4.11. При монтаже сильфонных компенсаторов не разрешаются их скру­чивание относительно продольной оси и провисание под действием собст­венного веса и веса примыкающих трубопроводов. Строповку компенсато­ров следует производить только за патрубки.

4.12. Монтажная длина сильфонных и сальниковых компенсаторов должна быть принята по рабочим чертежам с учетом поправки на темпе­ратуру наружного воздуха при монтаже.

Растяжку компенсаторов до монтажной длины следует производить с помощью приспособлений, предусмотренных конструкцией компенсаторов, или натяжными монтажными устройствами.

4.13. Растяжку П-образного компенсатора, следует выполнять после окончания монтажа трубопровода, контроля качества сварных стыков (кроме замыкающих стыков, используемых для натяжения) и закрепления конструкций неподвижных опор.

Растяжка компенсатора должна быть произведена на величину, указанную в рабочих чертежах, с учетом поправки на температуру наружного воз­духа при сварке замыкающих стыков.

Растяжку компенсатора необходимо выполнять одновременно с двух сторон на стыках, расположенных на расстоянии не менее 20 и не бо­лее 40 диаметров трубопровода от оси симметрии компенсатора, с помощью стяжных устройств, если другие требования не обоснованы про­ектом.

На участке трубопровода между стыками, используемыми для растяжки компенсатора, не следует производить предварительное смещение опор и подвесок по сравнению с проектом (рабочим проектом).

4.14. Непосредственно перед сборкой и сваркой труб необходимо произ­вести визуальный осмотр каждого участка на отсутствие в трубопроводе посторонних предметов и мусора.

4.15. Отклонение уклона трубопроводов от проектного допускается на величину ± 0,0005. При этом фактический уклон должен быть не менее минимально допустимого по СНиП II-Г.10-73* (II-36-73*) .

Подвижные опоры трубопроводов должны прилегать к опорным поверх­ностям конструкций без зазора и перекоса.

4.16. При выполнении монтажных работ подлежат приемке с составле­нием актов освидетельствования по форме, приведенной в СНиП 3.01.01-85, следующие виды скрытых работ: подготовка поверхности труб и сварных стыков под противокоррозионное покрытие; выполнение противокорро­зионного покрытия труб и сварных стыков.

О проведении растяжки компенсаторов следует составить акт по форме, приведенной в обязательном приложении 1.

4.17. Защита тепловых сетей от электрохимической коррозии должна быть выполнена в соответствии с Инструкцией по защите тепловых сетей от электрохимической коррозии, утвержденной Минэнерго СССР и Минжилкомхозом РСФСР и согласованной с Госстроем СССР.

Компенсационные устройства в тепловых сетях служат для устранения (или значительного уменьшения) усилий, возникающих при тепловых удлинениях труб. В результате снижаются напряжения в стенках труб и силы, действующие на оборудование и опорные конструкции.

Удлинение труб в результате теплового расширения металла определяют по формуле

где а - коэффициент линейного расширения, 1/°С; l - длина трубы, м; t - рабочая температура стенки, 0 C; t м -температура монтажа, 0 C.

Для компенсации удлинения труб применяют специальные устройства - компенсаторы, а также используют гибкость труб на поворотах трассы тепловых сетей (естественную компенсацию).

По принципу работы компенсаторы подразделяют на осевые и радиальные. Осевые компенсаторы устанавливают на прямолинейных участках теплопровода, так как они предназначены для компенсации усилий, возникающих только в результате осевых удлинений. Радиальные компенсаторы устанавливают на теплосети любой конфигурации, так как они компенсируют как осевые, так и радиальные усилия. Естественная компенсация не требует установки специальных устройств, поэтому ее необходимо использовать в первую очередь.

В тепловых сетях находят применение осевые компенсаторы двух типов: сальниковые и линзовые. В сальниковых компенсаторах (рис. 29.3) температурные деформации труб приводят к перемещению стакана 1 внутри корпуса 5, между которыми для герметизации помещается сальниковая набивка 3. Зажимается набивка между упорным кольцом 4 и грундбуксой 2 при помощи болтов 6.

Рис 19.3 Сальниковые компенсаторы

а - односторонний; б - двусторонний: 1 - стакан, 2 - грундбукса, 3 - сальниковая набивка,

4 - упорное кольцо, 5 - корпус, 6 - затяжные болты

В качестве сальниковой набивки применяют асбестовый прографиченный шнур или термостойкую резину. В процессе работы набивка изнашивается и теряет упругость, поэтому требуются периодическая ее подтяжка (зажатие) и замена. Для возможности проведения указанных ремонтов сальниковые компенсаторы размещают в камерах.

Соединение компенсаторов с трубопроводами осуществляется сваркой. При монтаже необходимо оставлять зазор между буртом стакана и упорным кольцом корпуса, исключающий возможность возникновения растягивающих усилий в трубопроводах в случае понижения температуры ниже температуры монтажа, а также тщательно выверять осевую линию во избежание перекосов и заедания стакана в корпусе.

Сальниковые компенсаторы изготовляют односторонними и двусторонними (см. рис. 19.3, а и б). Двусторонние применяют обычно для уменьшения числа камер, так как в середине их устанавливается неподвижная опора, разделяющая участки труб, удлинения которых компенсируются каждой из сторон компенсатора.

Основными достоинствами сальниковых компенсаторов являются малые габариты (компактность) и низкие гидравлические сопротивления, вследствие чего они нашли широкое применение в тепловых сетях, особенно при подземной прокладке. В этом случае их устанавливают при d y =100 мм и более, при надземной прокладке - при d у =300 мм и более.

В линзовых компенсаторах (рис. 19.4) при температурных удлинениях труб происходит сжатие специальных упругих линз (волн). При этом обеспечивается полная герметичность в системе и не требуется обслуживания компенсаторов.

Изготовляют линзы из листовой стали или штампованных полулинз с толщиной стенки от 2,5 до 4 мм газовой сваркой. Для уменьшения гидравлических сопротивлений внутри компенсатора вдоль волн вставляется гладкая труба (рубашка).

Линзовые компенсаторы имеют относительно небольшую компенсирующую способность и большую осевую реакцию. В связи с этим для компенсации температурных деформаций трубопроводов тепловых сетей устанавливают большое число волн или производят предварительную их растяжку. Применяют их обычно до давлений примерно 0,5 МПа, так как при больших давлениях возможно вспучивание волн, а повышение жесткости волн путем увеличения толщины стенок приводит к снижению их компенсирующей способности и возрастанию осевой реакции.

Ряс. 19.4. Линзовый трехволновый компенсатором

Естественная компенсация температурных деформаций происходит в результате изгиба трубопроводов. Гнутые участки (повороты) повышают гибкость трубопровода и увеличивают его компенсирующую способность.

При естественной компенсации на поворотах трассы температурные деформации трубопроводов приводят к поперечным смещениям участков (рис. 19.5). Величина смещения зависит от расположения неподвижных опор: чем больше длина участка, тем больше его удлинение. Это требует увеличения ширины каналов и затрудняет работу подвижных опор, а также не дает возможности применять современную бесканальную прокладку на поворотах трассы. Максимальные напряжения изгиба возникают у неподвижной опоры короткого участка, так как он смещается на большую величину.

Рис. 19.5 Схема работы Г- образного участка теплопровода

а – при одинаковых длинах плеч; б – при разных длинах плеч

К радиальным компенсаторам , применяемым в тепловых сетях, относятся гибкие и волнистые шарнирного типа. В гибких компенсаторах температурные деформации трубопроводов устраняются при помощи изгибов и кручения специально согнутых или сваренных участков труб различной конфигурации: П- и S-образных, лирообразных, омегообразных и др. Наибольшее распространение на практике вследствие простоты изготовления получили П-образные компенсаторы (рис. 19.6,а). Их компенсирующая способность определяется суммой деформаций по оси каждого из участков трубопроводов ∆l = ∆l /2+∆l /2. При этом максимальные изгибающие напряжения возникают в наиболее удаленном от оси трубопровода отрезке - спинке компенсатора. Последняя, изгибаясь, смещается на величину у, на которую необходимо увеличивать и габариты компенсаторной ниши.

Рис. 19.6 Схема работы П- образного компенсатора

а – без предварительной растяжки; б – с предварительной растяжкой

Для увеличения компенсирующей способности компенсатора или уменьшения величины смещения его устанавливают с предварительной (монтажной) растяжкой (рис. 19.6,б ). При этом спинка компенсатора в нерабочем состоянии изогнута внутрь и испытывает изгибающие напряжения. При удлинении труб компенсатор приходит сначала в ненапряженное состояние, а затем уже спинка изгибается наружу и в ней возникают изгибающие напряжения обратного знака. Если в крайних положениях, т. е. при предварительной растяжке и в рабочем состоянии достигаются предельно допустимые напряжения, то компенсирующая способность компенсатора увеличивается вдвое по сравнению с компенсатором без предварительной растяжки. В случае же компенсации одинаковых температурных деформации в компенсаторе с предварительной растяжкой не будет происходить смещение спинки наружу и, следовательно, уменьшатся габариты компенсаторной ниши. Работа гибких компенсаторов других конфигураций происходит примерно таким же образом.

Подвески

Подвески трубопроводов (рис 19.7) выполняются с помощью тяг 3, соединяемых непосредственно с трубами 4 (рис. 19.7, а ) или с траверсой 7 , к которой на хомутах 6 подвешена труба (рис. 19.7, б ), а также через пружинные блоки 8 (рис. 19.7, в ). Шарнирные соединения 2 обеспечивают перемещения трубопроводов. Направляющие стаканы 9 пружинных блоков, приваренные к опорным пластинам 10, позволяют исключить поперечный прогиб пружин. Натяжение подвески обеспечивается с помощью гаек.

Рис. 19.7 Подвески:

а – тяговые; б – хомутовая; в – пружинная; 1 – опорная балка; 2, 5 – шарниры; 3 – тяга;

4 – труба; 6 – хомут; 7 – траверса; 8 – пружинная подвеска; 9 – стаканы; 10 – пластины

3.4 Способы изоляции тепловых сетей.

Мастичная изоляция

Мастичная изоляция применяется только при ремонте тепловых сетей, проложенных или в помещениях, или в проходных каналах.

Изоляция из мастик накладывается слоями по 10-15 мм на горячий трубопровод по мере высыхания предшествующих слоев. Мастичную изоляцию нельзя выполнять индустриальными методами. Поэтому указанная изоляционная конструкция для новых трубопроводов неприменима.

Для мастичной изоляции применяется совелит, асбестотрепел и вулканит. Толщина слоя тепловой изоляции определяется на основе технико экономических расчетов или по действующим нормам.

Температура на поверхности изоляционной конструкции трубопроводов в проходных каналах и камерах должна быть не выше 60° С.

Долговечность теплоизоляционной конструкции зависит от режима работы теплопроводов.

Блочная изоляция

Сборно-блочную изоляцию из заранее отформованных изделий (кирпича, блоков, торфяных плит и пр.) устраивают по горячим и холодным поверхностям. Изделия с перевязкой швов в рядах укладывают на мастичной подмазке из асбозурита, коэффициент теплопроводности которой близок к коэффициенту самой изоляции; подмазка обладает минимальной усадкой и хорошей механической прочностью. Изделия из торфа (торфоплиты) и пробки укладывают на битуме или идитоловом клее.

К плоским и криволинейным поверхностям теплоизоляционные изделия крепят стальными шпильками, заранее приваренными в шахматном порядке с интервалом 250 мм. Если установка шпилек невозможна, изделия крепят как мастичную изоляцию. На вертикальных поверхностях высотой более 4 м устанавливают разгрузочные опорные пояса из полосовой стали.

В процессе установки изделия подгоняют друг к другу, размечают и просверливают отверстия для шпилек. Монтируемые элементы закрепляют шпильками или проволочными скрутками.

При многослойной изоляции каждый последующий слой укладывают после выравнивания и закрепления предыдущего с перекрытием продольных и поперечных швов. Последний слой, закрепленный каркасом или металлической сеткой, выравнивают мастикой под рейку и после этого наносят штукатурку толщиной 10 мм. Оклейку и окраску выполняют после полного высыхания штукатурки.

Преимущества сборно-блочной изоляции - индустриальность, стандартность и сборность, высокая механическая прочность, возможность облицовки горячих и холодных поверхностей. Недостатки - многошовность и сложность монтажа.

Засыпная изоляция

По горизонтальным и вертикальным поверхностям строительных конструкций применяют засыпную теплоизоляцию.

При устройстве теплоизоляции по горизонтальным поверхностям (бесчердачные кровли, перекрытия над подвалом) изоляционным материалом служит преимущественно керамзит или перлит.

На вертикальных поверхностях делают засыпную изоляцию из стеклянной или минеральной ваты, диатомовой крошки, перлитового песка и др. Для этого параллельно изолируемую поверхность ограждают кирпичами, блоками или сетками и в образовавшееся пространство засыпают (или набивают) изоляционный материал. При сетчатом ограждении сетку крепят к заранее установленным в шахматном порядке шпильками высотой, соответствующей заданной толщине изоляции (с припуском 30...35 мм). По ним натягивают металлическую плетеную сетку с ячейкой 15х15 мм. В образовавшееся пространство послойно снизу вверх с легким трамбованием засыпают сыпучий материал.

После окончания засыпки всю поверхность сетки покрывают защитным слоем из штукатурки.

Засыпная теплоизоляция достаточно эффективна и проста в устройстве. Однако она не устойчива против вибрации и характеризуется малой механической прочностью.

Литая изоляция

В качестве изоляционного материала применяют в основном пенобетон, который готовят смешиванием цементного раствора с пеномассой в специальной мешалке. Теплоизоляционный слой укладывают двумя методами: обычными приемами бетонирования пространства между опалубкой и изолируемой поверхностью или торкретированием.

При первом методе параллельно вертикальной изолируемой поверхности выставляется опалубка. В образовавшееся пространство теплоизоляционный состав укладывают рядами, разравнивая деревянной гладилкой. Уложенный слой увлажняют и укрывают матами или рогожами для обеспечения нормальных условий твердения пенобетона.

Методом торкретирования литую изоляцию наносят по сетчатой арматуре из 3-5-миллиметровой проволоки с ячейками 100-100 мм. Нанесенный торкретный слой плотно прилегает к изолируемой поверхности, не имеет трещин, раковин и других дефектов. Торкретирование производят при температуре не ниже 10°С.

Литая теплоизоляция характеризуется простотой устройства, монолитностью, высокой механической прочностью. Недостатки литой теплоизоляции - большая продолжительность устройства и невозможность производства работ при низких температурах.

Правила по монтажу и установке компенсаторов.

1. Сильфонные, линзовые и сальниковые компенсаторы следует монтировать в собранном виде.
2. Осевые сильфонные, линзовые и сальниковые компенсаторы следует устанавливать соосно с трубопроводами.

Допускаемые отклонения от проектного положения присоединительных патрубков компенсаторов при их установке и сварке должны быть не более указанных в технических условиях на изготовление и поставку компенсаторов.

3. При установке линзовых, волнистых и сальниковых компенсаторов, а также арматуры направление стрелки на их корпусе должно совпадать с направлением движения вещества в трубопроводе.

4. При монтаже сильфонных и линзовых компенсаторов следует исключить скручивающие нагрузки относительно продольной оси и провисание под действием собственной массы и массы примыкающих трубопроводов, а также обеспечить защиту гибкого элемента от механических повреждений и попадания искр при сварке.

5. Монтажная длина сильфонных, линзовых и сальниковых компенсаторов должна быть принята по рабочим чертежам с учетом поправки на температуру наружного воздуха при монтаже.

6. Для компенсации температурных деформаций трубопроводов при монтаже П-образные, сильфонные, линзовые и сальниковые компенсаторы должны устанавливаться с растяжением (сжатием) на указанную в проекте величину. Если температура воздуха в момент монтажа отличается от принятой в проекте, то величину растяжения (сжатия) компенсатора следует увеличить (если в проекте указано растяжение) или уменьшить (если указано сжатие) на значение (мм):

в=aL(t п +t м)

а- температурный коэффициент линейного расширения металла трубопровода,°С -1 , принимаемый для углеродистых и низколегированных сталей 0,012 и высоколегированных - 0,017;
L- расчетная длина участка трубопровода, м;
t п - принятая в проекте температура воздуха в момент монтажа,°С;
t м - фактическая температура воздуха в момент монтажа,°С.

7. При монтаже сальниковых компенсаторов должны быть обеспечены свободное перемещение подвижных частей и сохранность набивки.
8. Монтаж односекционных осевых сильфонных, линзовых, сальниковых и П-образных компенсаторов с приспособлениями для растяжения производят в такой последовательности (черт.1,а):

Растяжение компенсаторов до монтажной длины следует производить с помощью приспособлений, предусмотренных конструкцией компенсатора или натяжными монтажными устройствами.

Черт.1. Последовательность операций (1-5) при монтаже компенсаторов:

А - П-образных, осевых сильфонных односекционных, линзовых и сальниковых с приспособлением для растяжки;
б - то же без приспособления для растяжки;
в - П-образного компенсатора при групповой прокладке.

а) компенсатор одной стороной присоединяется сваркой или на фланце к трубопроводу;
б) участок трубопровода с присоединенным компенсатором устанавливается в направляющих и скользящих опорах и закрепляется в неподвижной опоре.

Примечание.

В зависимости от условий монтажа (например, для П-образных компенсаторов) могут производиться сначала установка трубопровода в направляющих и скользящих опорах и закрепление его в неподвижной опоре, а затем присоединение к этому участку компенсатора;

в) с помощью распорных приспособлений компенсатор подвергается растяжению на проектную величину. Допускается производить предварительную растяжку компенсатора до его присоединения к трубопроводу;

г) участок трубопровода с другой стороны, свободно лежащий в направляющих и скользящих опорах, подтягивается к свободному стыку компенсатора и присоединяется к нему сваркой или на фланце;

д) присоединяемый участок трубопровода закрепляется в другой неподвижной опоре;

е) с компенсатора снимается устройство для предварительной растяжки.

11. Монтаж осевых сильфонных компенсаторов без приспособления для растяжения производят в такой последовательности (см. черт.15,б):

а) участок трубопровода с одной стороны от компенсатора устанавливается в направляющих и скользящих опорах и закрепляется в неподвижной опоре;

б) участок трубопровода с другой стороны от компенсатора устанавливается так, чтобы расстояние между торцами участков трубопровода равнялось монтажной длине компенсатора, и закрепляется в другой неподвижной опоре. Монтажная длина компенсатора должна быть равна его строительной длине (компенсатор разгружен) плюс предварительное натяжение (сжатие)

в) компенсатор присоединяется к одному из участков трубопровода;

г) с помощью монтажных приспособлений компенсатор подвергается растяжке и присоединяется к другому участку трубопровода;

д) монтажные приспособления снимаются.

12. При групповом расположении П-образных компенсаторов (см. черт.15,в) параллельно прокладываемых трубопроводов растяжку компенсаторов следует производить натяжением трубопровода в холодном состоянии. В этом случае растяжку П-образного компенсатора следует выполнять после окончания монтажа трубопровода, контроля качества сварных стыков (кроме замыкающего, используемого для натяжения) и закрепления трубопровода в неподвижных опорах.

  1. Сварной стык, у которого следует производить растяжку компенсатора, указывают в проекте. Если такого указания нет, то во избежание снижения компенсационной способности компенсатора и его перекоса следует использовать стык, расположенный на расстоянии не менее 20 Дн от оси компенсатора
  2. В качестве стяжного устройства для натяжения используют съемные или приварные хомуты с монтажными удлиненными шпильками и гайками.
  3. При групповом расположении П-образных компенсаторов последовательность монтажа следующая:

а) участки трубопровода и П-образный компенсатор устанавливают на опоры. В зазор, оставленный для натяжения стыка, вставляется деревянная проставка шириной, равной величине растяжения;

б) компенсатор с помощью сварки обеими сторонами присоединяется к соответствующим участкам трубопровода;

в) участок трубопровода закрепляется в неподвижных опорах;

г) проставка удаляется, осуществляется предварительное натяжение компенсатора, стык соединяется сваркой;

д) монтажные приспособления удаляются.

  1. Для трубопроводов тепловых сетей согласно требованиям СНиП 3.05.03-85 растяжение компенсатора натяжением следует выполнять одновременно с двух сторон в стыках, расположенных на расстоянии не менее 20 Дн и не более 40 Дн от оси симметрии компенсатора
  2. О растяжении (сжатии) компенсатора должен быть составлен акт по форме приложения 6 СНиП 3.01.01-85.
  3. П-образные компенсаторы следует устанавливать с соблюдением общего уклона трубопровода, указанного в проекте.
  4. Линзовые, волнистые и сальниковые компенсаторы рекомендуется устанавливать в узлах и блоках трубопроводов при их сборке, применяя при этом дополнительные жесткости для предохранения компенсаторов от деформации и повреждения во время транспортирования, подъема и установки. По окончании монтажа временно установленные жесткости удаляют.
  5. При монтаже вертикальных участков трубопроводов следует исключить возможность сжатия компенсаторов под действием массы вертикального участка трубопровода. Для этого параллельно компенсаторам на трубопроводах следует приваривать по три скобы, которые срезают по окончании монтажа.
  6. Для определения правильного положения арматуры, устанавливаемой на трубопроводе, необходимо руководствоваться указаниями каталогов, технических условий и рабочих чертежей. Положение осей штурвалов определяется проектом.
  7. Трубопроводную арматуру надлежит монтировать в закрытом состоянии. Фланцевые и приварные соединения арматуры должны быть выполнены без натяжения трубопровода. Во время сварки приварной арматуры ее затвор следует открыть до отказа, чтобы предотвратить заклинивание его при нагревании корпуса.

Величина смещения (компенсирующая способность) компенсаторов, как правило, выражается комбинацией положительных и отрицательных числовых значений (±). Отрицательное (-) значение обозначает допустимое сжатие компенсатора, положительное (+) — его допустимое растяжение. Сумма абсолютных величин таких значений представляет собой полное смещение компенсатора. В большинстве случаев, компенсаторы работают на сжатие, компенсируя температурное расширение трубопроводов, реже (охлажденные среды и криогенные продукты) — на растяжение.

Предварительная растяжка при монтаже нужна для рационального использования полного смещения компенсатора в зависимости от характера работы трубопровода, условий монтажа и предотвращения возникновения стрессовых условий.

Пиковые значения расширения трубопровода зависят от минимальной и максимальной температур его эксплуатации. Например, минимальная температура работы трубопровода Tmin = 0°С и максимальная Т тах = 100°С. Т.е. разница температур At = 100°C. При длине трубопровода L равной 90 м, максимальное значение его удлинения трубопровода AL составит 100 мм. Представим, что для установки на таком трубопроводе используются компенсаторы со смещением ±50 мм, т.е. с полным смещением 100 мм. Также, представим, что температура окружающей среды на этапе их монтажа Т у равна 20°С. Характер работы компенсатора при таких условиях будет такой:

  • при 0°С — компенсатор будет растянут на 50 мм
  • при 100°С — компенсатор будет сжат на 50 мм
  • при 50°С — компенсатор будет находится в свободном состоянии
  • при 20°С — компенсатор будет растянут на 30 мм

Следовательно, предварительная растяжка на величину 30 мм при монтаже (Т у = 20°С) обеспечит эффективную его работу. Когда температура поднимется от 20°С до 50°С при вводе в эксплуатацию трубопровода, компенсатор вернется в свободное (ненапряженное) состояние. При повышении температуры трубопровода от 50°С до 100°С, смещение компенсатора относительно свободного состояние в сторону сжатия составит расчетные 50 мм.

Определение значения предварительного растяжения

Примем длину трубопровода равную 33 метрам, максимальную/минимальную рабочую температуру +150°С /-20°С соответственно. При такой разнице температур, коэффициент линейного расширения а составит 0,012 мм/м*°С.

Максимальное удлинение трубопровода может быть рассчитано следующим образом:

ΔL = αxLx Δt = 0,012 х 33 х 170 = 67 мм

Значение предварительного растяжения PS определяется по формуле:

PS = (ΔL/2) — ΔL (Ty-Tmin): (Tmax-Tmin)

Таким образом, в процессе монтажа компенсатора, его необходимо установить с предварительным растяжением PS равным 18 мм.

На рис. 1 показано расстояние необходимое для монтажа компенсатора в линию трубопровода, определяемое как сумма значений длины компенсатора lq в свободном состоянии и предварительного растяжения PS.

На рис. 2 показано, что при монтаже, с одной стороны компенсатор фиксируется фланцем или приваривается.

Компенсаторы тепловых сетей. В данной статье речь пойдет о выборе и расчете компенсаторов тепловых сетей.

Для чего же нужны компенсаторы. Начнем с того, что при нагревании любой материал расширяется, а, значит трубопроводы тепловых сетей, удлиняются при повышении температуры теплоносителя проходящего в них. Для безаварийной работы тепловой сети используются компенсаторы, которые компенсируют удлинение трубопроводов при их сжатии и растяжении, во избежание защемления трубопроводов и их последующей разгерметизации.

Стоит отметить, что для возможности расширения и сжатия трубопроводов проектируются не только компенсаторы, но и система опор, которые, в свою очередь, могут быть как "скользящими" так и "мертвыми". Как правило,в России регулирование тепловой нагрузки качественное - то есть, при изменении температуры окружающей среды, температура на выходе из источника теплоснабжения изменяется. За счет качественного регулирования подачи тепла - количество циклов расширения- сжатия трубопроводов увеличивается. Ресурс трубопроводов снижается, опасность защемления - возрастает. Количественное регулирование нагрузки заключается в следующем - температура на выходе из источника теплоснабжения постоянна. При необходимости изменения тепловой нагрузки - изменяется расход теплоносителя. В этом случае, металл трубопроводов тепловой сети работает в более легких условиях, циклов расширения- сжатия минимальное количество, тем самым увеличивается ресурс трубопроводов тепловой сети. Следовательно, прежде чем выбирать компенсаторы, их характеристики и количество нужно определиться с величиной расширения трубопровода.

Формула 1:

δL=L1*a*(T2-T1)где

δL - величина удлинения трубопровода,

мL1 - длина прямого участка трубопровода (расстояние между неподвижными опорами),

мa - коэффициент линейного расширения (для железа равен 0,000012), м/град.

Т1 - максимальная температура трубопровода (принимается максимальная температура теплоносителя),

Т2 - минимальная температура трубопровода (можно принять минимальная температура окружающей среды), °С

Для примера рассмотрим решение элементарной задачи по определению величины удлинения трубопровода.

Задача 1. Определить на сколько увеличится длина прямого участка трубопровода длиной 150 метров, при условии что температура теплоносителя 150 °С, а температура окружающей среды в отопительный период -40 °С.

δL=L1*a*(T2-T1)=150*0,000012*(150-(-40))=150*0,000012*190=150*0,00228=0,342 метра

Ответ: на 0,342 метра увеличится длина трубопровода.

После определения величины удлинения, следует четко понимать когда нужен а когда не нужен компенсатор. Для однозначного ответа на данный вопрос нужно иметь четкую схему трубопровода, с ее линейными размерами и нанесенными на нее опорами. Следует четко понимать, изменение направления трубопровода способно компенсировать удлинения, другими словами поворот с габаритными размерами не менее размеров компенсатора, при правильной расстановке опор, способен компенсировать тоже удлинение,что и компенсатор.

И так, после того, как мы определии величину удлинения трубопровода можно переходить к подбору компенсаторов, необходимо знать, что каждый компенсатор имеет основную характеристику - это величину компенсации. Фактически выбор количества компенсаторов сводится к выбору типа и конструктивных особенностей компенсаторов.Для выбора типа компенсатора необходимо определить диаметр трубы тепловой сети исходя из пропускной способности труби необходимой мощности потребителя тепла.

Таблица 1. Соотношение П- образных компенсаторов изготовленных из отводов.

Таблица 2. Выбор количества П- образных компенсаторов из расчета их компенсирующей способности.


Задача 2 Определение количества и размеры компенсаторов.

Для трубопровода диаметром Ду 100 с длиной прямого участка 150 метров, при условии, что температура носителя 150 °С, а температура окружающей среды в отопительный период -40 °С определить количество компенсаторов.бL=0,342 м (см. Задача 1).По Таблице 1 и Таблице 2 определяемся с размерами п образных компенсаторов (с размерами 2х2 м может компенсировать 0,134 метра удлинения трубопровода) , нам нужно компенсировать 0,342 метра, следовательно Nкомп=бL/∂х=0,342/0,134=2,55 , округляем до ближайшего целого числа в сторону увеличения и того - требуется 3 компенсатора размерами 2х4 метра.

В настоящее время все большее распространение получают линзовые компенсаторы, они значительно компактнее п - образных, однако, ряд ограничений не всегда позволяет их использование. Ресурс п- образного компенсатора значительно выше чем линзового, из-за плохого качество теплоносителя. Нижняя часть линзового компенсатора как правило "забивается" шламом, что способствует развитию стояночной коррозии металла компенсатора.