Редукторы типы назначение устройство передаточное число. Основные типы редукторов

Редуктор – инженерно-техническое устройство, предназначенное для преобразования крутящего момента с двигателя на другие механизмы. В большинстве механизмов он предназначен для изменения направления усилия, вращательного момента и давления, для чего используются различные типы.

На сегодняшний день существуют разные виды редукторов, среди которых выделяются:

  • механические;
  • турбинные;
  • газовые;
  • редукторы давления.

Наиболее распространёнными являются механические, которые используются в большинстве современных механизмов, в том числе автомобилях.

Конструкция редуктора

Конструктивные особенности редукторов зависят от их вида, устройства и предназначения. Они проектируются по принципу оптимального преобразования силового усилия. Большинство механических видов имеют схожие особенности конструкции и состоят из следующих элементов:

  1. Колеса производятся из стали высокой твердости, червячные валы – из стали с дополнительной цементацией.
  2. Для изготовления гибкого колеса применяется кованая сталь.
  3. К подшипникам обычно никаких особых требований не представляется, при изготовлении часто применяют обычные конические роликовые подшипники.
  4. Входящие и выходные валы.
  5. Корпус изготавливается методом литья из чугуна или сплавов алюминия. Большинство моделей оснащены ребрами, необходимыми для дополнительного отведения тепла.

Все составные механизмы расположены в корпусе в виде коробочки (состоит из основания и крышки). Элементы механизма работают в смазанном состоянии. Смазка наноситься способом разбрызгивания, а в некоторых моделях предусмотрен принудительные насос, расположенный внутри корпуса.

Исходя из применения, выделяются различные модели, отличающиеся конструкцией. Среди них выделяются цилиндрические, червячные, конические и планетарные. Каждый из них имеет ряд преимуществ и недостатков, опираясь на которые, происходит подбор модели для определенных целей. Также каждый тип механизма разрабатывается на основе таких параметров:

  • мощность;
  • момент нагрузки;
  • конструкционное расположение механизма;
  • пространственное отношение редуктора и приводного вала.

В основе каждой модели стоит определенный тип механической редукторной передачи. На сегодняшний день можно выделить следующие типы передач:

Цилиндрические

Наиболее распространенный тип, который отличается высоким уровнем надежности и долговечности. Часто используется в моделях, применение которых сопровождается повышенными нагрузками и необходимостью сохранения высокого КПД передачи энергии.

Благодаря своей универсальности и надежности, цилиндрическая передача получила развитие и делится на несколько подвидов:

  • прямозубая (зубья механической передачи выглядят как прямая резьба располагаются параллельно друг к другу);
  • косозубая (зубья располагаются под определенным углом);
  • шевронная (имеет особый тип строения зубьев, расположенных клинообразным типом);
  • передача с внутренним зацеплением (отличается наличием зубьев на внутренней стороне приводного колеса).

Конические

Разработаны на основе цилиндрических передач, отличаются сферой применение. Их использование необходимо в тех случаях, когда передача вращения выполняется чрез перекрестные валы.

Червячные

Предназначена для передачи усилия от движущего механизма между пересекающимися в одной плоскости валами. Обычно состоит из зубчатого колеса и червяка. Основным его преимуществом является высокий уровень передаточного отношения, небольшие размеры механизма и самоторможение. К недостаткам можно отнести скорый износ зубчатого колеса, низкие рабочие мощности и низкий КПД.

Среди червячных передач выделяются передачи с червяком:

  • цилиндрическим;
  • глобоидным;
  • спироидным;

А также тороидно-дисковой передачи и тороидной передачи внутреннего зацепления.

Гипоидная передача

Имеет схожий тип конструкции с червячной. Колесо имеет нарезанные спиральные зубья. Преимуществом этой передачи является число зубьев, одновременно входящих в зацепление. Это достигается благодаря смещению червяка относительно оси колеса. Коэффициент полезного действия такой передачи значительно выше, так благодаря масленому клину, увеличена скорость скольжения с одновременным уменьшением трения.

Волновая

Применяется, когда есть необходимость работы при высоких нагрузках. Состоит из гибкого и жесткого колеса и волнового генератора. Воздействие генератора влияет на гибкое колесо, деформируя его, из-за чего происходит зацепление зубьев гибкого и жесткого колеса. Позволяет минимизировать вибрацию и добиться максимальной плавности движения. Из-за чего этот тип передачи предпочитается для использования в точном машиностроении.

Каждый механизм отличается количеством ступеней редуктора. Некоторые имеют одноступенчатые пары, некоторые двухступенчатые и трехступенчатые. В машиностроении часто применяются комбинированные передачи, благодаря чему используются преимущества обеих передач.

Валы играют важную роль в передачи силового усилия. Выходной вал редуктора называют приводным. Вал должен соответствовать расчетной нагрузке и крутящему моменту.

Большинство моделей работает только в смазанном состоянии. Некоторые модели работают в масляной ванне, и для их смазывания предусмотрено специальное отверстие, через которое вводится смазка шприцом или специальным насосом. Простейшие типы механизмов требуют разбора корпуса и ручной смазки. При этом использовать можно как жидкую, так и консистентную смазку, качество которой должно соответствовать обслуживаемой модели.

Своевременная смазка поможет механизму работать более плавно и бесперебойно. Следует отметить, что качество смазки не менее важно, чем качество самого редуктора.

Классификация редукторов

На сегодняшний день типы редукторов классифицируются на основе:

В зависимости от расположения элементов они бывают вертикального и горизонтального исполнения. Среди различных типов можно выделить традиционные механические и мотор-редукторы (с дополнительно установленной двигательной установкой).

Основная, общепринятая классификация редукторов разработана в зависимости от типа передачи и по форме шестерен:

Цилиндрический и конический редуктор

В основе таких моделей используются конические и цилиндрические передачи. Данный тип прямого редуктора характеризируется высоким уровнем КПД (более 80%, в зависимости от количества зубьев). Еще одним преимуществом является практически полное отсутствие нагрева из-за отсутствия нагревающихся элементов. Это позволяет добиться простоты механизма, отсутствия необходимости в дополнительных мерах охлаждения. Данный тип получил высокую популярность благодаря надежности и долговечности.

Планетарный

Отличается от большинства других видов схемой расположения элементов. В его основе лежит планетарная передача. Основной ее функцией можно назвать преобразование поступающего момента. Подобные модели отличаются компактностью благодаря тому, что рабочие элементы находятся в одной геометрической оси, чего нельзя встретить в стандартных механизмах. Широко распространены в сфере приборостроения и машиностроения. Они позволяют комбинировать преимущества цилиндрических и червячных.

Позволяют также добиться оптимального соотношения производительности, компактности, надежности и долговечности.

Червячный

В основе этого вида лежит червячная передача, которая позволяет использовать его для различных целей. Использование этой модели помогает преобразовывать как прямой, так и угловой крутящий момент. В основе конструкции лежит спиралевидный винт, который формой напоминает червяка, из-за чего он получил свое название. Используется довольно редко, так как не отличается надежностью и высокой производительностью. В некоторых случаях при повышении нагрузки может выйти из строя. Несмотря на свои недостатки, он прочно занял свое место в машиностроении, так как является незаменимым при передаче усилия между перпендикулярно расположенными валами.

Волновой

Имеет особенный характеристический размер и тип конструкции, в основе которой лежит неподвижный корпус с нарезанными зубьями. Внутри корпуса расположен гибкий элемент, усилие на которые передается ведущим валом, соединенным с ним. Гибкий элемент изготовлен в виде овала, благодаря чему при движении внутри корпуса создает волнообразные движения.

Данный тип отличается высокой производительностью, имея высокое передаточное отношение, достичь которое невозможно с помощью других моделей. Отличается компактными размерами, что особо важно для использования в точном машиностроении.

Следует отметить, что современные тенденции машиностроения требуют особых характеристик от редукторов. Из-за этого все большего распространения получают комбинированные модели. Цилиндрические модели дополняют коническими горизонтальными передачами. Червячные дополняются дополнительными валами, а также некоторые модели оснащаются дополнительными моторами.

Различные виды мотор-редукторов получили широкое распространение благодаря тому, что в одном механизме объединяют еще и электродвигатель и все необходимые дополнительные элементы.

Применение механизма

Назначение редуктора неограниченное, большинство сложных машин и агрегатов имеют его в структуре механизма. В тяжелой промышленности чаще всего применяются червячные и цилиндрические механизмы, предназначенные для передачи усилия на инструмент.

Также он является основной составной частью механизма любого автомобиля, где применяются несколько подобных элементов. Он встречается в коробке передач, карданном вале, бензиновом насосе, тормозной системе и других узлах.

Некоторые автовладельцы думают, что редуктор и дифференциал имеют идентичную конструкцию и выполняют схожие функции. Но в отличие от редуктора, который изменяет крутящий момент, дифференциал распределяет крутящий момент между осями в определенной пропорции, без его повышения или понижения.

Редукторы давления можно встретить при добывании газа. Их применение позволяет контролировать давление и изменять его направление, будь то давление газа или воды. В нефтеперерабатывающей области подобный механизм используется в генераторных установка, различных мешалках, системах отопления и вентиляции. На цементных заводах применяются планетарные модели, которые являются составными частями транспортных лент, передающих огромное количество материалов. Назначение колесных редукторов состоит в работе ленточных транспортёров.

Практически на каждом производство используются устройства типа лебедок и подъемников, каждый из которых имеет в конструкции редуктор. Подобные механизмы встречаются в землеройной технике, которая применяется в строительстве и промышленных карьерах.

Встретить такие модели можно в различных бытовых приборах. Но чаще всего встречаются мотор-редукторы (в кухонных комбайнах, стиральных машинах, перфораторах и дрелях). В перфораторах применяют комбинацию планетарного и мотор-редуктора, что позволяет добиться оптимальной работы поступательно-вращающихся элементов.

Следует отметить, что практически каждый современный сложный механизм не может обойтись без использования редуктора. Данный элемент позволяет значительно повысить производительность двигателей, передачу силового усилия между конструкционными элементами и минимизировать износ механизмов. Выбор подходящей модели, своевременное обслуживание и соблюдение нормативной нагрузки, позволит полноценно использовать редуктор весь гарантийный срок, не зависимо от сферы его использования.

Вам также могут быть интересны статьи:

Мотор-редуктор: устройство и назначение Конвейер: типы, назначение, устройство

Редуктор представляет собой сложный механизм. Он состоит из червячных или зубчатых передач благодаря которым происходит вращение вала рабочего механизма.

Конструктивно он состоит из корпуса, в котором размещены элементы, передающие движение. Это зубчатые колеса, валы и другие. Иногда в корпусе могут находиться дополнительные устройства, обеспечивающие смазку цепей или охлаждение нужных деталей и узлов.

Производители выпускают большое количество агрегатов, отличающихся конструкцией и формой.

  • цилиндрический одноступенчатый. В нем оси ведомого и ведущего вала находятся параллельно;
  • конический, в котором происходит пересечение осей валов;
  • червячный. В них оси в пространстве перекрещиваются;
  • комбинированные механизмы, сочетающие в себе зубчатые и червячные передачи.

В зависимости от числа передач редуктор может быть одноступенчатый или многоступенчатый. Это устройство широко используется человеком во всех сферах его деятельности.

Он включен в состав привода различных механизмов. С его помощью снижается угловая скорость выходного вала. В некоторых случаях угловая скорость должна быть разной.

Для того чтобы это произошло, в корпусе размещают специальный механизм переключения и несколько пар зубчатых колец, обладающих различными передаточными числами. такой механизм известен всем под названием – коробка передач.

Червячные редукторы, достоинства и назначение

К отдельным механизмам, в которых передача вращения осуществляется особым способом, относятся изделия червячного типа.

Они передают крутящий момент, используя червячную передачу. Можно также услышать название зубчато-винтовая передача.

Это объясняется тем, что основными элементами являются червячное зубчатое колесо и специальный винт, который называют червяком.

Этот винт действительно особый, так как профиль резьбы имеет трапецеидальную форму. Для его изготовления применяются материалы, обладающие высокой прочностью.

Существует много разновидностей этого винта, но наиболее востребованными являются одно-, двух-, и четырехзаходные изделия. Заходность зависит от того, сколько имеется каналов резьбы на изделии.

Червячное колесо по внешнему виду напоминает обычное изделие. Но в нем подогнана резьба под форму винта-червяка.

Для мощных червячных редукторов колесо чаще всего изготавливают из различных материалов. Зубья чаще всего выполняют из антифрикционного металла, а для изготовления сердечника используют чугун или недорогую сталь.

Данные агрегаты отличаются высокой эффективностью и используются в тех устройствах, где нужно достигнуть высокого крутящего момента и низкой угловой скорости.

Достигается это за счет конструкции устройства. Ведущим звеном в механизме является червяк. А это значит, что на винт крутящий момент передается от двигателя, после чего происходит вращение выходного вала.

Достоинства агрегатов червячного типа

Прежде чем червячный купить, необходимо знать какими достоинствами он обладает. К его основным преимуществам можно отнести:

  • плавность хода;
  • уровень шума достаточно низкий;
  • обладает эффектом самоторможения;
  • использование всего двух элементов дает большое передаточное отношение.

К его недостаткам относится низкий коэффициент полезного действия, повышенный износ и из-за сил трения происходит большое выделение тепла. Поэтому чаще всего использовать такие агрегаты предпочтительно в тех случаях, когда необходима передача небольших мощностей.

Чтобы предотвратить быстрый износ устройства, следует соблюдать высокую точность при сборке и регулировке механизма. А для отвода лишнего тепла потребуется установить специальные приспособления.

Типы

Существуют различные типы червячных редукторов, которые отличаются по определенным критериям. Они подразделяются в зависимости:

  • от количества заходов резьбы;
  • от того, как нарезана резьба. Она может быть лево- и правосторонней;
  • от формы винта. Она бывает глобоидной и цилиндрической;
  • от формы профиля резьбы. Он может быть конволютным, архимедовым и эвольвентным;

Зубчатые колеса бывают различных типов. Профиль их зубьев может иметь изогнутую, прямую и роликовую форму. В последнем вместо зубьев применяется вращающийся ролик.

Данные изделия представляют собой большую группу механизмов. Их отличительной особенностью является то, что зацепление осуществляется с помощью цилиндрической зубчатой передачи.

В зависимости от расстояния между осями выходного и входного валом могут быть соосными и обладающие параллельными валами.

В свою очередь соосный механизм может быть представлен как цилиндрический , или же он может иметь от двух и выше ступеней.

Изделия также отличаются по способу установки. С этой целью используются специальные лапы, фланцы и насадки.

Достоинства цилиндрических моделей

Преимущества цилиндрического редуктора неоспоримы.

  1. Они отличается высоким коэффициентом полезного действия;
  2. Обладают повышенной нагрузочной способностью. Они в состоянии, практически без потерь, передавать большие мощности;
  3. Они отличаются высокой кинематической точностью;
  4. Хорошо работают как при неравномерных нагрузках, так и при любых количествах запусков и остановок;
  5. В этих изделиях отсутствует самоторможение, поэтому у любого из них имеется возможность провернуть выходной вал;
  6. Благодаря высокому коэффициенту полезного действия, очень мало нагреваются, в результате почти вся энергия передается потребителю;
  7. Обладает хорошей надежностью;
  8. Большое количество вариантов зубчатых передач позволяет подобрать самый подходящий редуктор для требуемого передаточного движения.

Есть у них и недостатки. Это повышенный уровень шума и обладают низким передаточным числом. К недостаткам можно отнести и отсутствие обратимости, но это только в том случае, когда нужно чтобы выходной вал внешней нагрузки не имел возможности поворота.

Использование цилиндрических редукторов

Обладая хорошими преимуществами, цилиндрический одноступенчатый , а также двух- и трехступенчатые механизмы считается лидером среди подобных устройств.

Изделия нашли свое применение в металлорежущих станках, их устанавливают в мешалках, измельчителях, в валковом и другом оборудовании.

Практически ограничений для их использования нет, за исключением тех случаев, когда целесообразнее будет использовать другие типы агрегатов.

Например, если возникла необходимость, чтобы механизм имел плавный ход или же нужна в приводе угловая компоновка. Цилиндрические редукторы могут располагаться горизонтально и вертикально.

Наиболее востребована горизонтальная установка цилиндров. А в целом выбор зависит от того, насколько удобна компоновка привода.

Редуктор – механизм, изменяющий крутящий момент и мощность двигателя, присутствует практически в любой машине и станке. Он является частью трансмиссии автомобиля и регулирует с высокой точностью перемещение в точных приборах. Что такое редуктор с технической точки зрения? Это одно или несколько зубчатых зацеплений, взаимодействующих между собой и понижающих количество оборотов двигателя до приемлемой скорости вращения исполняющего узла. Вместо ведущей шестерни может быть червяк.

Устройство и принцип работы

Редуктор без дополнений газовый или гидравлический, подразумевает механическое устройство для изменения угловой скорости и крутящего момента. Он работает по принципу Золотого правила, когда передаваемая вращением мощность практически не изменяется, уменьшается на КПД.

Устройство

Простейшее устройство редуктора, это зацепление из шестерни и зубчатого колеса. Крутящий момент передается через непосредственный контакт зубьев – элементов детали. Они движутся с одинаковой линейной скоростью, но разной угловой. Количество вращений шестерни и колеса за единицу времени разное, зависит от диаметров деталей и количества зубьев.

Шестерни и колеса неподвижно закреплены на валах или изготовлены совместно с ними. В корпусе может быть от одной до нескольких пар зубчатых зацеплений. На сборочном чертеже редуктора хорошо видно его устройство и составные части:

  • корпус;
  • крышка корпуса;
  • пары в зацеплении;
  • валы;
  • подшипники;
  • уплотнительные кольца;
  • крышки.

Корпус в самом низу имеет отверстие для слива масла и приспособление контроля уровня смазочных материалов, глазок или щуп. Разъем с крышкой совпадает с плоскостью расположения осей.

На кинематической схеме редуктора схематически указаны зубчатые соединения, расположений валов и направление вращения. Также показан тип зуба, прямой или наклонный. По кинематической схеме можно определить количество ступеней, и другие характеристики, как работает данный редуктор.

Принцип действия

Принцип работы механического редуктора основан на передаче вращательного момента от одного вала другому посредством взаимодействия зубчатых деталей, неподвижно закрепленных на них. Линейная скорость зубьев одинаковая. Она не может быть разной, поскольку контакт жесткий.

Принципом действия редуктора является давление зуба на поверхность аналогичного со смежной детали и передача при этом усилия, двигающего ведомое колесо. В результате скорость вращения уменьшается. На выходном валу создается усилие, которое способно привести в движение исполняющий механизм.

Главная пара всегда первая, быстроходная шестерня или червяк, соединенный с двигателем и соответствующее ему колесо. По ее типу определяется и весь узел. Количество ступеней равно количеству зацеплений, имеющих передаточное число больше 1.

Маркировка

В условном обозначении редуктора имеется ряд цифр и букв, указывающих на его параметры и тип. Первым стоит указание на количество ступеней и вид зубчатого зацепления:

  • цилиндрическое – Ц;
  • червячное – Ч;
  • коническое – К;
  • глобоидное – Г;
  • волновые – В;
  • планетарное – П.

Комбинированные модели обозначаются несколькими буквами, начиная с первой пары:

  • цилиндрически-червячные – ЦЧ;
  • червячно-цилиндрические – ЧЦ;
  • конически-цилиндрические – КЦ.

Количество передач данного вида указывается цифрой перед буквой.

Горизонтальное расположение считается нормой и не имеет своего обозначения. Для вертикального узла после обозначения типа передач ставится буква В. Б – означает быстроходную модель. За ним ставится условное числовое обозначение варианта сборки.

В маркировке может присутствовать указание на климатическое исполнение, например, для тропиков, северных районов, по какому госту выполнено.

Например: 1Ц2У-250-31,5-22-М-У2. Двухступенчатый цилиндрический с горизонтальным расположением. Межцентровое расстояние валов тихоходной ступени 250 мм, передаточное число 31,5. Вариант сборки узла 22, хвостовик по типу муфты, климатическое исполнение соответствует ГОСТ 15150-69.

Скачать ГОСТ 15150-69

Электрический привод – мотор и передаточный узел в одном корпусе, имеет несколько отличающуюся маркировку. Вначале стоит буквенное обозначение марки сборного привода, указывается скорость вращения выходного колеса, поскольку она постоянна, соединена с одним электродвигателем.

Технические характеристики

Редуктора отличаются внешне по размерам и форме. Внутреннее строение разнообразное. Объединяет их всех перечень технических характеристик, по которым они подбираются на различные машины и станки. К основным параметрам редуктора относятся:

  • передаточное число;
  • значение крутящего момента редуктора;
  • расположение;
  • количество ступеней;
  • крутящий момент.

Передаточное число берется общее, всех передач, и одновременно указывается таблица передаточных чисел, если узел имеет 2 и более ступени. По нему подбирают узел, который преобразует вращение электродвигателя или мотора с нужное количество оборотов.

При этом важно знать величину крутящего момента на выходном валу редуктора, чтобы определить, будет ли достаточной мощность, чтобы привести в движение агрегат.

Передаточное число

Основная характеристика зубчатого зацепления, по которой определяются все остальные параметры. Показывает, на сколько оборотов меньше делает колесо относительно шестерни. Формула передаточного отношения:

U = Z 2 / Z 1 ;

где U – передаточное число;

Z 1 число зубьев шестерни;

Z 2 число зубьев зубчатого колеса.

Модуль зубьев шестерни и колеса одинаковый. Их количество напрямую зависит от диаметра. Поэтому можно использовать формулу:

U = D 2 / D 1 ;

Где D 2 и D 1 диаметры колеса и шестерни соответственно.

Расчет общего передаточного момента определяется как произведение передаточных чисел всех пар:

U р = U 1 × U 2 × … × U n ;

Где U р передаточное число;

U 1 , U 2 , U n передаточные числа зубчатых пар.

где U 12 – передаточное отношение;

W 1 и W 2 – угловые скорости;

n 1 и n 2 – частота вращения.

Определение крутящего момента на валу необходимо, оно позволяет узнать мощность на выходе редуктора, величины связаны прямо пропорциональным соотношением.

Крутящий момент входного двигателя на входе, умножается на передаточное число. Для получения более точного фактического значения надо умножить на значение КПД. Коэффициент зависит от количества ступеней и типа зацепления. Для прямозубой конической пары он равен 98%.

Назначение механизма

Редуктором называют узел, который изменяет мощность. Это может быть давление газа и жидкости в газовых баллонах, трубопроводах и на распределительных подстанциях. Механические редукторы изменяют число оборотов и угловую скорость.

Для чего нужен в механизме и машине зубчатый передаточный механизм. Он снижает угловую скорость двигателя, увеличивая при этом в столько же раз крутящий момент – силу, с которой может воздействовать выходной вал на исполняющий механизм.

Скорость вращения электродвигателя может достигать 1500 об/мин. Для работы станка оборудования она не подходит. При этом, если к шкиву мотора напрямую прикрепить груз, он не сможет сдвинуть его с места.

Функции узла, уменьшить скорость вращения в десятки раз и настолько же увеличить крутящий момент – усилие, с которым машина будет совершать работу.

Виды редукторов

Редуктор, это механизм, передающий крутящий момент. Простейшими механическими узлами, передающими крутящий момент, считаются ременная и цепная передачи. Они передают вращение с одного детали на другую и при этом изменяют угловую скорость.

Наибольшая группа редукторов, которые широко используются во всех механизмах, от кофемолки до доменных печей, механические зубчатые редукторы. Они разделяются на группы по нескольким параметрам:

  • типу зубчатого зацепления;
  • количеству передач;
  • способу монтажа;
  • пространственное положение осей и зубчатых соединений.

Обычно ведущий вал редуктора быстроходный. Он жестко соединен с двигателем и вращается с такой же скоростью, до 1500 об/мин. При обратном отношении, когда ведущим является колесо и скорость вращения на выходе возрастает, а крутящий момент падает, узел называют понижающим.

По типу зубчатого зацепления и форме шестерни, они делятся:

  • цилиндрические;
  • конические;
  • червячные;
  • планетарные;
  • комбинированные;
  • волновые.

Комбинированные модели могут иметь различные типу зубчатых зацеплений.

Цилиндрические

Наибольшее количество выпускается цилиндрических редукторов. Рабочая поверхность колеса и шестерни имеет форму цилиндра. Модели отличаются высоким КПД, простотой исполнения и большим разнообразием деталей. Одноступенчатые узлы получили название передаточного редуктора. Он компактный, понижает скорость вращения и одновременно передает крутящий момент.

По форме зуба цилиндрические модели делятся:

  • прямозубые;
  • косозубые;
  • шевронные.

По кинематической схеме они бывают прямолинейные и разветвленные.

Прямой зуб имеет закругленную поверхность, способствующую максимально возможной площади контакта. При зацеплении зубья контактируют по всей длине. Трение сводится к минимуму. КПД прямозубого зацепления наиболее высокое, 99%.

К достоинствам прямозубых передач относятся минимальная нагрузка на подшипники, малое трение, механизм не греется.

Недостаток в сильном шуме во время работы и малой мощности. Чтобы предать большое усилие, колеса надо делать широкими, крупногабаритными.

Косой зуб расположен под углом. Площадь контакта у него больше при одинаковой ширине обода колеса. Зубья заходят в зацепление постепенно. Работает косозубая пара тихо, плавно и способна выдержать большие нагрузки.

Площадь трения по эвольвенте больше, детали греются. КПД косозубого зацепления 98% и ниже. Изготовление деталей с косым зубом сложнее, особенно фрезеровка зубьев. Требуется большая точность при настройке режущего инструмента. Наклонное положение зуба создает дополнительные осевые нагрузки на подшипники и сокращает срок их работы.

Для компенсации отрицательных осевых усилий косозубых передач, созданы шевронные. Они представляют два колеса на одном валу с наклоном зубьев в противоположную сторону. Таким образом еще больше увеличивается мощность.

Работают шевронные зацепления тихо. Недостаток в сложной и длительной технологии нарезания зубьев.

Количество передач может быть любое. Расположение валов параллельное, горизонтальное и вертикальное в одной плоскости. При большом числе зубчатых зацеплений в одном корпусе, возможно двурядное расположение валов.

Цилиндрические модели широко применяются во всех областях. От бытовой техники, кофемолок, дрелей, до металлургической и горнорудной промышленности. На каждом станке стоит один или несколько редукторов. В особо тяжелых условиях используют шевронные передачи.

Конические

Шестерня и колесо имеют коническую поверхность. Валы расположены под углом. Зуб на шестерне прямой и радиальный. Часто конические передачи используются в комбинированных или понижающих узлах. Направление вращения возможно в любую сторону. В качестве ведущего может выступать колесо.

Сколько передач в коническом передаточном механизме, зависит от его назначения. Обычно одна. Наиболее известный пример косозубого зацепления – дифференциал заднего моста, понижающий крутящий момент узел. От одного колеса вращается синхронно в одном направлении 2 шестерни.

Червячный

Вместо ведущей шестерни в зубчатом зацеплении стоит червяк с нарезанной резьбой. Нитей бывает 1, 2, 4. Другого количества заходов не делают. Оси валов расположены перпендикулярно в разных плоскостях.

Червяк при вращении взаимодействует с несколькими зубьями колеса. От сильного трения под углом, возникает тормозящий момент. Он не позволяет колесу провернуться и сдвинуть червяк. Самоторможении используют в грузоподъемных механизмах. Подвешенный груз не сможет пойти вниз. Червячная передача может перемещать колесо и связанный с ним механизм с большой точностью. Это используют в приборах и станках для точной настройки положения инструмента.

В волновых моделях для вращения применяют колебания расположенной внутри колеса шестерни. Широкого распространения модель пока не получила.

Как выбирать редуктор вместо сломавшегося, на имеющуюся технику и при создании механизмов самостоятельно. Основным является мощность на выходном валу. Она рассчитывается на основании оборотов двигателя по передаточному числу.

Следует обратить на расположение валов, оно в цилиндрических моделях может быть в одну сторону.

Крепление осуществляется с помощью фланца непосредственно к валу двигателя и с помощью отверстий в подошве устанавливается на платформу.

В маркировке указано межцентровое расстояние между валами. Этот размер имеет конструктивное значение при установке узла и соединения его с двигателем и валом рабочего механизма.

Следует посмотреть, какая пара в редукторе первая, ее передаточное число, зацепление. Выбор редуктора включает в себя и расположение валов в пространстве. Они могут располагаться под прямым углом и быть в разных плоскостях. Тип подшипников указывается в технической документации. Там же таблица сроков эксплуатации разных узлов.

При проектировании машины, подбор червячного редуктора выполняется по мощности и расположении зацепления. При нижнем зацеплении пара хорошо смазывается, не требует дополнительного охлаждения и способна работать длительно время. Следует обратить внимание на рабочий режим. Узел не всегда способен работать по несколько часов непрерывно. Червячное соединение быстро перегревается.

Распространенные неисправности

Поломки редуктора можно избежать при правильной его эксплуатации и регулярном уходе. Следует внимательно изучить паспорт. В нем указаны виды технического обслуживания и их периодичность. Надо регулярно менять масло, постоянно доливать его. Соблюдения режима работы позволит сохранить агрегат целым.

Основная неисправность редуктора связана с его перегревом. Это происходит при отсутствии смазки и использовании масел других марок. В противном случае агрегат перегревается, зубчатое зацепление может заклинить.

Подшипники имеют свой запас прочности. Их период эксплуатации указан в паспорте. Если вовремя не поменять на новые, узлы начинают рассыпаться. Шарики выпадут, и вал начнет вращаться с большим усилием, рывками.

Между корпусом и крышками: верхней и боковой, по плоскости разъема, при сборке закладывается герметик. Он не позволяет маслу вытекать наружу. Если его вовремя не менять, жидкость потечет со всех разъемов.

дата: 04.04.2018

Автомобильный редуктор

Что представляет собой редуктор в автомобиле? Ответ на этот вопрос дать могут не все, даже заядлые автомобилисты. В большинстве случаев , пользователи не уделяют внимание каким-то ключевым аспектам. Они лишь придерживают принципа: заправить, обслужить, ездить, отдавать в сервис на ремонт. Итак, давайте разберемся, в чем назначение и что такое редуктор в автомобиле!

Редуктором называется один из узлов трансмиссии, который используется для снижения крутящего момента, получаемого с коленвала. Далее редуктор передает крутящий момент другим узлам трансмиссии, то есть межосевой дифференциал.

Дифференциал и редуктор в автомобиле, в чем разница?

Такой вопрос часто задается автомобилистами, поэтому следует провести четкую грань между этими двумя узлами. Дифференциал используется для распределения приходящего крутящего момента между осями, а редуктор – для повышения/понижения крутящего момента.

Существуют следующие виды редукторов:

  • Передний редуктор – в переднм мосту.
  • Задний редуктор – в заднем мосту.

Передний редуктор используется в переднеприводных автомобилях, задний – заднеприводных. При этом передний редуктор в автомобиле интегрируется в КПП, а второй – заднюю ось. Исключением являются полноприводные транспортные средства, располагающие одновременно двумя редукторами. В последнем случае узлы трансмиссии сообщаются между собой карданом.

Устройство автомобильного редуктора

Для ознакомления следует рассмотреть основные составляющие данного узла трансмиссии.

Редуктор автомобильный включает в себя:

  • Корпус – изготовляется из стали высокой прочности и ряда легких сплавов. Он используется для защиты межосевого дифференциала от избыточных внешних воздействий.
  • Крепления – они обеспечивают прочную связь корпуса к основанию, уплотнителями выступают сальники. Последние, не допускают утечек трансмиссионной жидкости, обеспечивающей функционирование дифференциала и шестерней.

Задний редуктор

  • 1) Ведущая шестерня – сообщается с вторичным валом КПП, передавая крутящий момент ведомой шестерне.
  • 2) Ведомая шестерня – после принятия крутящего момента передает его межосевому дифференциалу.

Следует отметить, что ведомая шестерня обладает большими габаритами и большим числом зубцов, поскольку она призвана для приема чрезмерно высокого крутящего момента от ведущей.

Межосевой дифференциал

Например, автомобиль повернул – внешнее колесо получило больший крутящий момент, внутреннее – меньший. При этом ведущая ось работает вся – оба колеса на оси работают вместе, с чем долго не могли справиться автопроизводителя порядка 80-ти лет назад.

Вот для чего принято использовать дифференциал в автомобилях:

  • 1) Корпус и сальники – применяется с целью обеспечения устойчивости шестерней к повреждениям.
  • 2) Шестерни – сателлиты – чаще всего в структуре их три и две из них располагаются они параллельно по отношению друг к другу, а третья – перпендикулярно. Перпендикулярную шестерню сообщается с ведомой. Сателлиты необходимы для передачи крутящего момента с ведомой шестерни на шестерни полуосей.
  • 3) Шестерни полуосей (колесные) – передача крутящего момента на валы колесных осей.
  • 4) Подшипники – отвечают за вращение валов колес и уменьшение трения между составными элементами.

Редукторные передачи

Данная группа составляющих различается по принципу соединения зубцов ведущей и ведомой шестерен. Благодаря использованию различных вариаций, выделяют четыре группы редукторных передач в автомобилях:

  • Коническая – конические шестерни в числе двух штук располагаются перпендикулярно друг другу. Эта схема используется в задне- и полноприводных автомобилях.
  • Цилиндрическая – две цилиндрические шестерни сообщаются между собой параллельно. Эта схема используется в переднеприводных автомобилях.
  • Гипоидная – шестерни располагаются по отношению друг к другу под углом 45 градусов. Эта схема используется в задне и полноприводных автомобилях.
  • Червяная – сообщающиеся один винт с червячной ведомой шестерней.

Чем выделяется редуктор в машине?

Каждый редуктор автомобиля обладает присущими характеристиками, основной из которых является – передаточное число, которое отражает отношение между угловой скоростью ведущего/ведомого валов. Высокий показатель передаточного числа характерен для грузовых автомобилей, низкий показатель – для легковых.

Следует отметить, что в легковых автомобилях вес редуктора заметно ниже, благодаря чему они развивают большие скорости. Индекс передаточных чисел определяется числом зацепок ведомой шестерни с ведущей за один оборот. Например, если индекс составляет 4.8, значит за единственный полный оборот ведущей шестерни, ведомая производит сцепку 4 целых и 0,8 раза.

С какими трудностями можно столкнуться?

Чаще всего, слабым местом автомобильного редуктора являются рабочие комплектующие, то есть те, которые подвержены значительному износу. Основной причиной являются повышенные нагрузки и длительное масляное голодание. Последний фактор связан с дефицитом или полным отсутствием трансмиссионной жидкости.

О поломке редуктора в автомобиле свидетельствует неприятный звук, гул, вибрация и щелчки в узлах, в которых сообщаются шестерни и подшипники. Если из строя вышли сальники, наблюдается течь трансмиссионной жидкости, регулярно просачивающиеся через образовавшиеся трещины.

Повреждение корпуса с обрывом креплений – нечастое, но весьма опасное явление. Оно происходит вследствие наезда транспортного средства на какое-то высокое или острое препятствие. В 70% случаев после подобного происшествия в месте крепления корпуса образуется трещина или группа трещин. Сразу они не вызовут никаких проблем, но в дальнейшем в них попадает грязь, пыль, вредящая структуре трансмиссионной жидкости.

Впоследствии сырье не может выполнять ранее возложенные на себя функции охлаждения и смазки шестерен. Это приводит к их перегреву, износу и даже поломке зубьев. Если корпус автомобильного редуктора подвергался повреждениям, об этом может свидетельствовать громкий гул от работающих элементов. Это заметно влияет на акустику и комфорт при езде. В местах повреждения корпуса или его креплений образуется течь масла.

Как решить проблему поломки автомобильного редуктора

Поскольку мы разобрались, для чего необходим редуктор в автомобиле и изучили основные поломки, следует изучить способы решения возникших проблем. Чтобы редуктор не вышел неожиданно из строя, необходимо соблюдать технологический регламент обслуживания транспортного средства и не забывать о замене трансмиссионной жидкости через каждые 100 000 км пробега.

Вторым вариантом, когда потребуется провести срочную замену трансмиссионной жидкости, является вынужденная замена сальников. Такой вариант также приветствуется автомобильными пользователями.

Если вы обнаружили в работе трансмиссии автомобиля какие-то неполадки, указывающие на сбой в работе редуктора в автомобиле, незамедлительно обратитесь в автомобильный сервис для полноценной диагностики. Это позволит избежать непредвиденных трат и заметно сократить стоимость ремонта и обслуживания.

Раздел 18. Приводы. Редукторы и мотор-редукторы общего назначения

Приводы. Классификация.

Объектами курсового проектирования в курсе «Детали машин» обычно являются приводы машин и механизмов (например: приводы ленточных транспортеров, цепных конвейеров, индивидуальные приводымашин и механизмов ), использующие большинство деталей и узлов общего назначения.

Привод машины - система, состоящая из двигателя и связанных с ним устройств дл я приведения в движение одного или нескольких твердых тел, входящих в состав машины.

Структурная схема привода включает двигатель того или иного типа и трансмиссию.

Трансмиссия - устройство для передачи вращения от двигателя к потребителям энергии; может быть механической, электрической, гидравлической, пневматической и комбинированной.

В курсовом проекте трансмиссия состоит из комбинации редуктора и открытой передачи.

Приводы транспортных машин, разнообразного станочного оборудования, вспомогательных устройств и средств механизации различных работ (стенды, установки, приспособления с машинным приводом) и т.п. допускают применение стандартных двигателей и однотипных механических передач, в том числе стандартных редукторов, что позволяет отнести эти приводы к категории общего назначения.

Машинные приводы общего назначения классифицируют по ряду признаков.

Основными из них являются:

Число двигателей и схемы соединения их с передачами;

Тип двигателя; тип передачи.

Особую группу составляют приводы, в которых используют встраиваемые двигатели или встраиваемые механические передачи - мотор-редукторы .

По числу двигателей различают приводы:

Групповой,

Однодвигательный,

Многодвигательный.

Групповым называют привод, при котором от одного двигателя посредством механических передач приводятся в движение несколько отдельных механизмов или машин. Привод этого типа применяется в различных строительных и погрузочно-разгрузочных машинах. Групповой привод имеет низкий КПД, громоздок и сложен по конструкции.

Однодвигательный привод наиболее распространен, особенно при использовании электродвигателей. Каждая производственная машина снабжается индивидуальным приводом.

Многодвигательным называется привод, если отдельные механизмы машины приводятся в движение от отдельных двигателей. При этом два или более двигателей могут соединяться с одной и той же передачей соответствующей конструкции. Многодвигательный привод используется в исполнительных механизмах строительных, путевых, грузоподъемных, транспортных и других машин и станочного оборудования и включает электродвигатели и гидромоторы .

По типу двигателей различаются приводы:

Электрические,

С двигателями внутреннего сгорания,

С паровыми двигателями,

Гидропривод,

Пневмопривод .

Приводы могут иметь следующие типы передач :

Цилиндрические зубчатые,

Конические зубчатые,

Червячные,

Планетарные,

Волновые,

Комбинированные,

Гидродинамические,

Ременные,

Винт-гайка.

По расположению механизма привода в пространстве различают:

Приводы с горизонтальным тихоходным выходным валом;

Приводы с вертикальным тихоходным выходным валом.

В зависимости от расположения привода конструируют элементы передач и выбирают тип и исполнение двигателя.

Редукторы

Редуктором называют агрегат, содержащий передачи зацеплением и предназначенный для повышения вращающего момента и уменьшения угловой скорости двигателя. Редукторы широко применяют в различных отраслях машиностроения благодаря высоким экономическим, потребительским и другим характеристикам. В корпусе редуктора размещены зубчатые или червячные передачи, неподвижно закрепленные на валы. Валы опираются на подшипники, размещенные в гнездах корпуса. Установка передачи в отдельном корпусе гарантирует точность сборки, лучшую смазку, более высокий КПД, меньший износ, а также защиту от попадания в нее пыли и грязи. Во всех ответственных установках вместо передач назначают редукторы. Редукторы имеют исключительно широкое применение.

Назначение редуктора - понижение угловой скорости и соот­ветственно повышение вращающего момента ведомого вала по сравнению с ведущим. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называют ускорителями или мультипликаторами.

Редуктор состоит из корпуса (литого чугунного или свар­ного стального), в котором помещают элементы передачи - зубчатые колеса, валы, подшипники и т. д. В отдельных слу­чаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устройства для охлаждения (например, змеевик с охлаждающей водой в корпусе червячного редуктора).

Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назна­чения. Второй случай характерен для специализированных заво­дов, на которых организовано серийное производство редукто­ров.

Редуктор общемашиностроительного применения - редуктор, выпол­ ненный в виде самостоятельного агрегата, предназначенный для приводаразличных машин и механизмов и удовлетворяющий комплексу техни­ ческих требований .

Редукторы общемашиностроительного применения, несмотря на к онструктивные различия, близки по основным технико-экономическим характеристикам: невысокие окружные скорости, средние требования к надёжности, точности и металлоемкости при повышенных требованиях по трудоемкости изготовления и себестоимости. Это их отличает от специаль ных редукторов (авиационных, судовых, автомобильных и др.) , выполненных с учетом специфических требований, характ ерных для отдельных отраслей сельского хозяйства.

Внешние (потребительские) характеристики редукторов каждого типа определяются следующим:

Кинематической схемой редуктора,

Передаточным числом u (частотой вращения выходного вала),

Вращающим моментом на выходном валу,

Допускаемой консольной нагрузкой на выходном валу,

Силовой характеристикой редуктора,

Коэффициентом полезного действия (КПД).

По ГОСТ 16162-86Е к редукторам общемашиностроительного применения относят:

Цилиндрические одно-, двух- и, трехступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 710 мм;

Цилиндрические планетарные одно- и двухступенчатые с радиусом расположения осей сателлитов водила тихоходной ступени r ≤ 200 мм;

Конические одноступенчатые с номинальным внешним делительным диаметром ведомого колеса d вм ≤ 630 мм;

Коническо -цилиндрические двух- и трехступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 250 мм;

Червячно-цилиндрические двухступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 250 мм.

В соответствии с ГОСТ 29076–91 редукторы и мотор-редукторы обще­ машиностроительного применения классифицируют в зависимости от :

Вида применяемых передач (зубчатые , червячные или зубчато -червячные);

Числа ступеней (одноступенчатые, двухступенчатые и т. д.);

Взаимного расположения геометрических осей входного и выходного валов в пространстве (горизонтальное и вертикальное);

Типу зубчатых колес (цилиндрические , конические, коническо -цилиндрические и т. д.);

Способа крепления редуктора (на приставных лапах или на плите, фланец со стороны входного/выходного вала насадкой);

Расположения оси выходного вала относительно плоскости основания и оси входного вала (боковое, нижнее, верхнее) и числа входных и выходных концов валов.

Особенностям кинематической схемы (разверну­тая , соосная, с раздвоенной ступенью и т. д.).

Тип и конструкция редуктора определяются видом, расположением и количеством отдельных его передач (ступеней).

Самый простой зубчатый редуктор – одноступенчатый (цилиндрический (рис.1.1, а )). Используется при малых передаточных числах i ≤ 8 … 10, обычно i ≤ 6,3.

Двухступенчатый цилиндрический зубчатый редуктор (1.1,б ) является наиболее распространенным (их потребность оценивается в 65%). Для них наиболее характерны числа i = 8-40.

Трехступенчатые редукторы (рис.1.1, в ) применяются при больших передаточных числах. Однако имеется тенденция замены их более компактными планетарными редукторами.

Конические зубчатые редукторы применяются в том случае , когда быстроходный тихоходный валы должны быть взаимно перпендикулярны. Обычно передаточное число таких редукторов невелико i ≤ 6,3. При i >12,5 применяют коническо -цилиндрические редукторы (рис.1.1,ж ).

Рис.1.1. Зубчатые редукторы

Для улучшения работы наиболее нагруженной тихоходной ступени (T ) используются редукторы с раздвоенной быстроходной ступенью (рис.1.1, г ). Для создания равномерной нагрузки обеих зубчатых пар быстроходной ступени, их делают косозубыми, причем, одну пару правой, а вторую – левой. Зубчатые колеса на тихоходном валу располагаются симметрично. При этом деформация вала (Т ) не вызывает существенной концентрации нагрузки по длине зубьев. Это положительное явление. Такие редукторы получаются на 20% легче, чем по обычной развернутой схеме (рис.1.1, в ).

Соосные редукторы (рис.1.1, д ) применяют с целью уменьшения длины корпуса или других конструктивных особенностей привода.

Мотор-редукторы представляют собой компактные агрегаты, в которых редуктор и мотор монтируются в одном корпусе. В большинстве случаев мотор-редукторы имеют зубчатые передачи. Они более экономичны, чем тихоходные электродвигатели, имеют более высокий КПД. Но из-за сложности конструкции мотор-редукторы применяются редко.

Одноступенчатые червячные редукторы наиболее распространены. Диапазон передаточных чисел: U = 8-63. При больших значениях "U " применяют двухступенчатые червячные редукторы или комбинированные зубчато -червячные. Редукторы выполняются со следующим расположением червяка и червячного колеса:

С нижним расположением червяка (под колесом) – применяются при окружных скоростях червяка V ≤ 5 м/ c ; смазка – окунанием червяка, допускают передачу большой мощности по критерию нагрева (рис.1.2, а ).

С верхним расположением червяка (червяк над колесом) – применяются в быстроходных передачах; смазка осуществляется окунанием колеса (рис.1.2,б ).

Червяк с горизонтальной осью, сцепляющейся с колесом, имеющим вертикальную ось (рис.1.2,в ).

Червяк с вертикальной осью, расположенный сбоку колеса. Колесо имеет горизонтальную ось (рис.1.2,г ).

Две последних конструкции применяют ограниченно, в связи с трудностью смазки подшипников вертикальных валов

Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые ре­дукторы.


Рис.1.2. Схемы червячных редукторов: а ) с нижним; б ) с верхним; в, г ) с боковым расположением червяка

Для обозначения передач в редукторе используют заглавные буквы русского алфавита по простому мнемоническому правилу: Ц – цилиндрическая, П – планетарная, К - коническая, Ч – червячная, Г – глобоидная, В – волновая. Количество одинаковых передач обозначается цифрой. Оси валов, расположенные в горизонтальной плоскости, не имеют обозначения. Если все валы расположены в одной вертикальной плоскости, то к обозначению типа добавляется индекс В. Если ось быстроходного вала вертикальна, то добавляется индекс Б, а к тихоходному соответственно – Т.

Мотор – редукторы обозначаются добавлением спереди буквы М. Например, МЦ2СВ означает мотор – редуктор с двухступенчатой соосной цилиндрической передачей, где горизонтальные оси вращения валов расположены в одной вертикальной плоскости, здесь В не индекс, поэтому пишется рядом с заглавной буквой.

Обозначение типоразмера редуктора складывается из его типа и главного параметра его тихоходной ступени. Дляцилиндрической, червячной глобоидной передачи главным параметром является межосевое расстояние; планетарной – радиус водила, конической – диаметр основания делительного конуса колеса, волновой – внутренний посадочный диаметр гибкого колеса в недеформированном состоянии.

Под исполнением принимают передаточное число редуктора, вариант сборки и формы концов валов. Пример условного обозначения одноступенчатого цилиндрического редуктора с межосевым расстоянием 160 мм и передаточным числом 4: редуктор Ц-160-4.

Вариант сборки цилиндрических редукторов и формы концов валов по ГОСТ 20373-74; червячных редукторов – по ТУ 2.056.218-83, а коническо – цилиндрических редукторов – ГОСТ 20373-80.

Редукторы общемашиностроительного применения в приводах комплектуются преимущественно четырехполюсными электродвигателями.

По ГОСТ 16162-86Е основные параметры редукторов определяют при номинальной частоте вращения быстроходного вала n б =1500 об/мин. Допускается использование редукторов при n б =3000 об/мин, с условием, что окружная скорость зубчатых передач не превышает 16 м/с.

Выбор горизонтальной или вертикальной схемы для редукторов всех типов обусловлен удобством общей компоновки привода (относительным расположениемдвигателяирабочего вала приводимой в движение машины и т.д.).

Двигатель и трансмиссия, как правило, монтируются на общей раме.

Новые редукторы имеют гладкие основания корпусов с утопленными лапами, а крышки имеют горизонтальные поверхности верхних частей, служащие технологическими базами (рис.1.3).

Корпуса редукторов новой конструкции имеют следующие преимущества:

1. Увеличен объем масла, что увеличивает срок его годности.

2. Возможность исключения фланцев, как основного источника неплоскостности .

3. Большая жесткость основания и податливая крышка корпуса, что улучшает виброакустические свойства.

4. Меньшее коробление при старении, что исключает течь масла;

5. Уменьшение отказов примерно на 30% из-за повышенной прочности утопленных лап.

6. Упрощение дренажирования накопленного масла от разбрызгивания из подшипниковых узлов.

7. Возможность повышения точности расположения осей валов .

8. Простота наружной обработки.

9. Отсутствие цековки под головки стяжных винтов корпуса с основанием.

10. Обеспечение требования технической эстетики.


Рис.1.3. Корпус редуктора типа КЦ1 новой конструкции

Основные детали и показатели качества редукторов, мотор – редукторов и вариаторов

Для удобства сборки корпус редуктора выполняется составным – основание и крышка. Основание с помощью лап или пояса крепится к фундаменту или раме. Для точной установки крышки на основание корпуса пользуются коническими штифтами.

Корпус редуктора должен быть прочным и жестким, т.к. его деформации могут вызвать перекос валов и неравномерное распределение нагрузки по длине зубьев. Для повышения жесткости корпуса его усиливают наружными или внутренними ребрами.

Корпусы редукторов обычно выполняют литыми из серого чугуна (СЧ 15-32/ СЧ 18-36) средней прочности. Для передачи больших мощностей или ударных нагрузок корпусы отливают из высокопрочного чугуна или стали. В индивидуальном и мелкосерийном производствах корпусы редукторов изготавливают сварными из листовой стали.

Основные размеры корпуса – длина, ширина и высота – применяются в зависимости от размеров зубчатых колес. Другие размеры находятся по эмпирическим формулам.

Валы , как правило, подвергают улучшению до твердости НВ 270 – 300. Валы d 80 мм допускается изготавливать из стали 45; диаметром d = 80-125 – из стали 40 X ; а валы d = 125 – 200 мм – из стали 40ХН; 35ХМ. Тихоходные валы имеют выходной конец, в котором напряжения кручения составляют около 28 МПа концы валов целесообразно выполнять коническими.

Опоры валов редукторов выполняютсяв виде подшипников качения. Обычно в опорах устанавливается по одному подшипнику качения. При малых и средних нагрузках применяют шарикоподшипники, при средних и больших – роликоподшипники. В редукторах с шевронной передачей быстроходный вал передачи устанавливают на плавающих, обычно, цилиндрических роликоподшипниках. Это обеспечивает самоустановку вала по оси и одинаковую нагрузку полушевронов.

В редукторах с конической передачей для лучшей фиксации зубчатых колес в осевом направлении валы передачи рекомендуется устанавливать на радиально-упорных, чаще конических роликоподшипниках.

Смазка зацепления при V ≤ 12,5 м/ c рекомендуется картерная (окунанием). Емкость масляной ванны назначают из расчета 0,35 – 0,7 литра на I кВт передаваемой мощности (большие значения – при большей вязкости масла и наоборот). Зубчатые колеса следует погружать в масло на глубину 3-4 модуля. Тихоходные колеса (2-й и 3-й ступени) при необходимости допустимо погружать на величину до 1/3 диаметра колеса. В редукторах с быстроходными передачами применяют струйную или циркуляционную смазку, осуществляемую под давлением. Масло, прокачиваемое насосом, проходит через фильтр и при необходимости через охладитель, а затем поступает к зубьям через трубопровод и сопла. При окружной скорости V ≤ 20 м/c для прямозубых передач и при V ≤ 50 м/с для косозубых масло подается непосредственно в зону зацепления. При V > 50 м/ c (V > 20 м/ c ) , во избежание гидравлического удара, масло подается раздельно на шестерню и колесо и на некотором расстоянии от зоны зацепления.

Смазка подшипников редуктора при V > 4 м/ c может осуществляться тем же маслом, что и зубчатых колес, путем разбрызгивания масла. При V < 4 м/с предусматривается самостоятельная (консистентная) смазка. При больших скоростях и нагрузках на подшипники предусматривается смазка под давлением, осуществляемая от общей системы.

Расчет зубчатого редуктора состоит из расчета его элементов – передач, валов, шпонок, подшипников. Для редукторов большой мощности производится тепловой расчет. При расчете зубчатых передач редукторов, выполненных в виде самостоятельных агрегатов, основные параметры этих передач должны быть согласованы с соответствующими ГОСТ.

Червячные колеса с целью экономии цветных металлов выполняются с венцом из антифрикционных материалов и стальным или чугунным центром.

- бандажированная конструкция, в которой бронзовый обод (венец) посажен на стальной центр с натягом. Рекомендуется легкопрессовая реже прессовая посадки. Чтобы исключить возможность сдвига венца, ввертывают в стыкуемые поверхности винты. Конструкция применяется для колес относительно небольших размеров и ненапряженных в тепловом отношении (рис. 1.4).

Болтовая конструкция, в которой бронзовый венец, выполненный с фланцем, прикрепляется болтами к ступице колеса. Применяется для колес больших и средних диаметров.

Б иметаллическая конструкция, бронзовый венец, который отлит в форму с предварительно вставленным в нее центром. Конструкция наиболее рациональна и применяется в редукторах серийного производства.

Рис.1.4.Типовые конструкции зубчатых венцов червячных колес

В червячных передачах, как правило, применяются подшипники качения.

Смазка червячных передач с нижним расположением червяка (рис. 1.2) осуществляется окунанием. Уровень масла таков, чтобы погружался в масло на глубину, близкую к высоте витка. Если червяк расположен сверху, то уровень масла роли не играет (при средних и небольших скоростях). В быстроходных передачах этого типа применяют циркуляционную – принудительную смазку.

Важнейший характеристический размер, в основном определяющий нагрузочную способность, габариты и массу редуктора называют главным параметром редуктора. Главный параметр цилиндрических, червячных и глобоидных редукторов - межосевое расстояние a w тихоходной ступени, планетарных - радиус r водила , конических - номинальный внешний делительный диаметр d e 2 колеса , волновых - внутренний диаметр d 2 гибкого колеса.

Для многоступенчатых редукторов и мотор-редукторов показателями назначения являются межосевое расстояние и радиус расположения осей сателлитов и задают их по величине выходной ступени с обозначением a ω T и R т.

Основная энергетическая характеристика редуктора – номинальный момент Т ном , представляющий собой допустимый крутящий момент на его тихоходном (ведомом) валу при постоянной нагрузке.

Рекомендуемый ряд крутящих моментов на тихоходных валах редукторов в соответствии с проектом международного стандарта составляет по нормальному ряду чисел со знаменателем 2 в диапазоне 1-125 Н∙ м и со знаменателем 1,41 в диапазоне 125–1000000 Н∙ м .

Передаточные числа редукторов выбирают по нормальному ряду чисел со знаменателем 1,25 (1-й предпочтительный ряд) или со знаменателем 1,12 (2-й ряд).

Межосевые расстояния быстроходной (α w Б ) и тихоходной (α wT ) ступеней двух и трехступенчатых редукторов зубчатых цилиндрических должны соответствовать ГОСТ

Одноступенчатыередукторыимеют наибольшие передаточные числа u :

Для цилиндрических передач до 8;

Для конических до 6,3;

Для червячных до 80.

Выпускаются редукторы и мотор-редукторы в широком диапазоне передаточных чисел: от u min =1 (для одноступенчатых конических и цилиндрических редукторов) до u max =3150 (для мотор-редукторов, планетарных и некоторых других типов редукторов). Большинство отечественных и зарубежных редукторов имеют u ≤ 160. Около 75 % редукторов выполняют в двухступенчатом исполнении (u =8-40).

Номинальные значения передаточных чисел редукторов установлены двумя рядами (1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20 и т.д.).

Редукторы общемашиностроительного применения допускают вращающие моменты на выходном валу Т т =(31,5-125000) Нм .

Для обеспечения взаимозаменяемости редукторов составлены три ряда номинальных значений моментов Т т (Нм ).

Так, ряд 1 включает значения Т т =31,5; 45; 63; 90; 125; 180; 250; 355; 500; 710; 1000 и др.

Реальный диапазон передаточных отношений (чисел) редукторов - от 1 до 1000. Значения передаточных отношений должны соответствовать ряду R 20 предпочтительных чисел (ГОСТ 8032–84).

Критерием технического уровня редуктора служит относительная масса Y = т/Т , где т - масса редуктора, кг; Т - вращающий момент, Нм .

Тип редуктора, параметры и конструкцию определяют в зависимости от его места в силовой цепи машины, передаваемой мощности, частоты вращения, назначения машины и условий ее эксплуатации.

При проектировании назначенного типа редуктора за исходные принимают следующие данные: передаточное отношение, вращающий момент на тихоходном валу, частоту вращения быстроходного вала, режим нагружения , необходимую долговечность, технологические возможности завода-изготовителя (имеющиеся материалы, типы загото­ вок, виды проводимых термической и термохимической обработок).

К определяющим параметрам относят межосевые расстояния, внеш­ние делительные диаметры конических колес, радиусы водил или дели­тельные диаметры центральных колес с внутренними зубьями в плане­ тарных передачах, ширину колес, модули и передаточные отношения, коэффициенты, диаметры червяка и число винтов червяка (для червячных передач).

Классификационные группировки редукторов, мотор-редукторов и вариаторов приведены в таблице 1.

Таблица 1

Старшая классификационная группировка

Младшая классификационная группировка

Редукторы нормализованные

Цилиндрические

Планетарные

Конические

Коническо -цилиндрические

Червячные

Волновые

Мотор-редукторы цилиндрические

Мотор-редукторы планетарные

Мотор-редукторы с зацеплением Новикова

Мотор-редукторы червячные

Мотор-редукторы волновые

Вариаторы

Ременные

Многодисковые

Конусные

Торовые

Номенклатура показателей качества редукторов, мотор-редукторов и вариаторов общемашиностроительного применения, используемых при оценке уровня качества продукции, установленная по ГОСТу 4. 128-84 приведена в таблице 2.

Таблица 2

Наименование показателя качества

Обозначение

показателя

Наименование характеризуемого свойства

1.1. Классификационные показатели

1.1.1. Номинальная мощность на входном валу, кВт

1.1.2. Номинальная мощность на выходном валу, кВт

1.1.3. Номинальная частота вращения входного вала, с -1 (мин –1)

1.1.4. Номинальная частота вращения выходного вала, с -1 (мин –1)

1.1.5. Передаточное число

1.1.6. Передаточное отношение

1.1.7. Диапазон регулирования

Р вх.н ом

Р вых.н ом

n вх.ном

n вых . ном

u

i

1.2. Показатели функциональной и технической эффективности

1.2.1. Номинальный вращающий момент на выходном валу, Нм

1.2.2. Допускаемая радиальная консольная нагрузка на входной вал, Н

1.2.3. Допускаемая радиальная консольная нагрузка на выходной вал, Н

Т вых.н ом

F вх

F вых

Нагрузочная способность

Нагрузочная способность

Нагрузочная способность

1.3. Конструктивные показатели

1.3.1. Удельная масса, кг /Нм

1.3.2. Габаритные размеры (длина, ширина, высота), мм

1.3.3. Межосевое расстояние, мм

1.3.4. Внутренний диаметр гибкого колеса, мм

1.3.5. Радиус расположения осей сателлитов, мм

1.3.6. Внешний диаметр делительный конического колеса

𝛾

L × B × H

a 𝜔 T

d

R

d e2

Эффективность исполь­зо­вания материала

Определяющие размеры

Определяющие размеры

Определяющие размеры

Определяющие размеры

Определяющие размеры

Стойкость к воздействию климатического фактора

2. Показатели надежности

2.1. Установленная безотказная наработка, ч (ГОСТ 27.002-89)

2.2. Полный средний срок службы, год (ГОСТ 27.002-89)

2.3. Полный установленный срок службы, год (ГОСТ 27.002-89)

2.4. Полный девяносто процентный ресурс передач, ч (ГОСТ 27.002-89)

Т сл

Т сл

Безотказность

Долговечность

Долговечность

Долговечность

2.5. Полный девяносто процентный ресурс гибкой передачи,(ремня, цепи)

2.6. Полный девяносто процентный ресурс подшипников, ч (ГОСТ 27.002-89)

2.7. Удельная суммарная трудоемкость технических обслуживаний,

чел-час /час (ГОСТ 27.002-89)

S т.о .

Долговечность

Долговечность

Ремонтопригодность

3. Показатели унификации

3.1. Коэффициент применяемости,%

3.2. Коэффициент повторяемости,%

К пр

К п

Степень заимствования

Степень применяемости

4. Эргономический показатель

4.1.Корректированный уровень звуковой мощности, дБА

L ра

Звуковое давление

5. Патентно-правовые показатели

5.1. Показатель патентной защиты

5.2. Показатель патентной чистоты

Р п.з .

Р п.ч .

Патентная защита

Патентная чистота

6. Показатель экономного использования энергии

6.1. Коэффициент полезного действия, %

𝜂

Эффективность использования энергии

Требования к системе качества установлены в ГОСТ Р ИСО 9001 – ГОСТ Р ИСО 9003. Эти стандарты отражают три разные модели системы качества с точки зрения жизненного цикла продукции, например, на стадии промышленного производства, при модернизации и аттестации продукции.

Разработкой методов количественной оценки качества занимается наука – квалиметрия. При этом производится многоуровневая оценка качества с позиции системного подхода.

Одноступенчатые цилиндрические редукторы

Данный тип редукторов отличаются числом ступеней и положением валов.

Из редукторов рассматриваемого типа наиболее распростра­нены горизонтальные (рис. 2). Вертикальный одноступенча­тый редуктор показан на рис. 3. Как горизонтальные, так и вертикальные редукторы могут иметь колеса с прямыми, ко­сыми или шевронными зубьями. Корпуса чаще выполняют литыми чугунными, реже - сварными стальными. При серий­ном производстве целесообразно применять литые корпуса. Валы монтируют на подшипниках качения или скольжения. Последние обычно применяют в тяжелых редукторах.

Компоновочные возможности одноступенчатых редукторов ограничены и отличаются расположением осей валов в пространстве. Диапазон передаточных чисел u =1,6…6,3. Угол наклона косозубых передач β =8 0 …22 0 .

Максимальное передаточное число одноступенчатого цилиндрического редуктора по ГОСТ 2185-66 u m ах = 12,5. Высо­та одноступенчатого редуктора с таким или близким к нему пере­даточным числом больше, чем двухступенчатогостемжезна­чением и (рис. 1.5). Поэтому практически редукторы с передаточными числами, близкими к максимальным, применяют редко, ограничиваясь и 6. Ново-Краматорский машиностроитель­ный завод (НКМЗ) выпускает крупные (межосевые расстояния а w = 300 ÷ 1000 мм) одноступенчатые горизонтальные редук­торы с и = 2,53 ÷ 8,0.

Выбор горизонтальной или вертикальной схемы для редукто­ров всех типов обусловлен удобством общей компоновки при­вода (относительным расположением двигателя и рабочего вала приводимой в движение машины и т. д.).

Рис.1.5. Сопоставление габаритов одноступенчатого и двухступенчатого редукторов

с цилиндрическми колесами при одинаковом передаточном числе u = 8,5

Краткая техническая характеристика редуктора типа Ц1У общего назначения приведена в таблице 3. Кинематическая схема, чертеж общего вида без третьей проекции и общий вид в аксонометрии показаны на рис.2.

Вариант одноступенчатого узкого цилиндрического редуктора с расположением горизонтальных осей валов в вертикальной плоскости типа Ц1УВ показан на рис.3. В данной конструкции для смазки подшипников быстроходного вала предусмотрено дополнительное устройство в виде желоба и каналов с заглушками.

Рис.2. Редуктор типа Ц1У - a 𝛚 - U p -12К


Рис.3. Редуктор типа Ц1УВ – a 𝛚 - U p -15К

Таблица 3

Типоразмер редуктора

Передаточное

число - u Р

Номинальный крутящий момент

на вых . валу, Нм

Масса редуктора

в кг

(2; 3,15; 4;5; 6,3)

Двухступенчатые цилиндрические редукторы

Среди двухступенчатых цилиндрических редукторов общего назначения имеют широкое применение горизонтальные редукторы типа 1Ц2У (рис.4). Основные параметры приведены в таблице 4.

В двухступенчатых редукторах расположены три вала. Первый из них, расположенный ближе к двигателю, называется ведущим и имеет индекс 1 (например, d 1); второй вал является промежуточными имеет индекс 2 (например, d 2); третий вал называется ведомым и имеет индекс 3 (например, d 3). Ведущий и промежуточный валы образуют быстроходную ступень, имеющую индекс 1 или б (а 1 , U 1 или а б , U б ), промежуточный и ведомый валы образуют тихоходную ступень, имеющую индекс 2 или т (а 2 , U 2 или а т , U т ). Шестерни и червяки имеют нечетные индексы, колеса - четные индексы. Например, шестерня, расположенная на ведущем валу, имеет индекс 1 (d 1 , z 1 , HB 1), а шестерня, расположенная на промежуточном валу, имеет индекс 3 (d 3 , z 3 , HB 3). Колесо, расположенное на ведомом валу имеет индекс 4 (d 4 , z 4 , HB 4).


Рис.4. Горизонтальные редукторы типа 1Ц2У


Рис. 4.1. Двухступенчатый горизонтальный редуктор с цилиндрическими колесами:

а - кинематическаясхема;б - редукторсоснятойкрышкой(колесакосозубые);

в - общий вид редуктора, у которого подшипниковые узлызакрыты врезнымикрышками;

г - общийвид редуктора, у которого подшипниковые крышки привернуты винтами

Цилиндрические пары цилиндрических редукторов выполняют по развернутой узкой (рис.5,а), развернутой (рис.5,б) или соосной (рис.5,в) схеме с одним или двумя потоками мощности.

В отношении типа зубьев и подшипников в двухступенча­тых редукторах справедливо сказанное относительно одно­ступенчатых цилиндрических редукторов; часто быстроходную ступень выполняют косозубой , а тихоходную - прямозубой (это относится как к соосным, так и к несоосным редукторам).


Рис. 5. Кинематические схемы цилиндрических редукторов

Наибольшее распространение имеет развернутая схема за счет рациональной унификации деталей редуктора. Так, например, шестерни, колеса и валы можно использовать для изготовления редукторов нескольких типоразмеров. Эти редукторы отличаются простотой, но из-за несимметричного расположения колес на валах повышается концентрация нагруз­ки по длине зуба. Поэтому в этих редукторах следует приме­нять жесткие валы.

При использовании косозубых передач рекомендуетсяс целью унификации выбирать направление зуба шестерни - левое, для колеса - правое во всех ступенях редуктора. Эти рекомендации оправданы для крупносерийного и массового производства, так как унификация деталей приводит к снижению себестоимости. Однако, в единичном и мелкосерийном производстве целесообразно на первой ступени брать направление зубьев шестерни - левое, а шестерни второй ступени - правое. Это вызвано тем, что осевые силы на промежуточном валу частично уравновешиваются, тем самым снижается осевая нагрузка на опоры.

Развернутую схему целесообразно использовать до a ω T = 630...800 мм. Редуктор, спроектированный по развернутой схеме, получается удлиненной формы. Масса такого редуктора примерно на 20% больше, чем у редуктора, спроектированного по раздвоенной схеме.

В раздвоенной схеме быстроходная или тихоходная ступень раздваивается на две косозубые передачи с встречным направлением зуба, образуя фактически шевронную передачу с разнесенными полушевронами. Более рациональной считается схема с раздвоенной быстроходной ступенью, так как в ней удваивается номенклатура менее нагруженных деталей, упрощается промежуточный вал, его можно выполнить как вал-шестерню, появляется возможность сделать быстроходный вал “плавающим”, это предпочтительнее, чем делать “плавающим” промежуточный или тихоходный вал при раздвоенной тихоходной ступени.

Редуктор с раздвоенной быстроходной ступенью, имею­щий косозубые колеса, показан на рис. 5.1. Тихоходная ступень при этом может иметь либо шевронные колеса, либо прямозубые (рис. 5.1, б). Кинематическая схема и общий вид редуктора с раздвоенной тихоходной ступенью показаны на рис. 5.2.

При раздвоенной быстроходной (или тихоходной) ступени колеса расположены симметрично относительно опор, что приводит к меньшей концентрации нагрузки по длине зубьев, чем при применении обычной развернутой или соосной схемы. Это позволяет иметь в рассматриваемом случае менее жест­кие валы. Быстроходный вал редуктора, показанного на рис. 5.1,б, должен иметь свободу осевого перемещения («плавающий» вал), что обеспечивается соответствующей кон­струкцией подшипниковых узлов; в редукторе с шевронными тихоходными колесами свободу осевого перемещения должен иметь и тихоходный вал. При соблюденииуказанногоусловия нагрузка распределяется поровну между параллельно работаю­щими парами зубчатых колес.

Рис. 5.1. Двухступенчатыйгоризонтальныйредуктор с раздвоенной первой (быстроходной) ступенью:

а - кинематическая схема; б -о бщий вид (без крышки)

Рис. 5.2. Двухступенчатый горизонтальный редуктор с раздвоенной второй (тихоходной) ступенью:

а - кинематическая схема; б - общий вид (6eз крышки)

В соосной схеме (рис.6) ось быстроходного вала совпадает с осью тихоходного вала, это дает возможность компоновать технические устройства в осевом направлении. Редуктор, выполненный по соосной схеме, имеет массу, габариты и стоимость такие же как и редуктор, выполненный по развернутой схеме. В соосном редукторе быстроходная ступень редуктора является недогруженной, так как силы, возникающие в зацеплении колес тихоходной ступени, значительно больше, чем в быстроходной, а межосевые расстояния ступеней одинаковы (а ω Б = а ω T ). Указан­ное обстоятельство является одним из основных недостатков соосных редукторов.

Хотя при сравнительно небольшом общем передаточном числе 8 ÷ 16) можно (при обеспечении удовлетворительной компоновки редуктора) так произвести разбивку общего передаточного числа по ступеням, что нагрузочная способность быстроходной ступени будет использована полностью.

Кроме того, к их недостаткам относят также:

а) большие габариты в направлении геометрических осей валов, по сравнению с редукторами, выполненными по развер­нутой схеме;

б) затруднительность смазывания подшипников, располо­женных в c редней части корпуса;

в) большоерасстояниемеждуопорамипромежуточного вала, поэтому требуется увеличить его диаметр для обеспече­ния достаточной прочности и жесткости;

г) некоторое усложнение конструкции опоры быстроходного и тихоходного вала, расположенной внутри редуктора.

Очевидно, применение соосных редукторов ограничивается случаями, когда нет необходимости иметь два выходных конца быстроходного или тихоходного вала, а совпадение геометри­ческих осей входного и выходного валов удобно при намеченной общей компоновке привода. Соосные редукторы очень удобны для использования в машинах с повторно-кратковременным режимом работы.

, б показана кин ематическая схема соосного редуктора с уменьшенными размерами в осевом направлении за счет отсутствия внутренней стенки. Оба п одшипника быстроходного вала размещены в стакане, который одновр еменно предназначен и для установки одной из опор тихоходного вала. Для увеличения жесткости стакан выполнен с толстыми оребренными ст енками; колесо тихоходной ступени, в отверстии которого размещен подшипник, изготовлено как одно целое с валом.


Рис.6. Соосный редуктор: а - конструкция, б - кинематическая схема.

Рис. 6.1. Двухступенчатый горизонтальный соосный редуктор:

а - кинематическая схема; б - общий вид

Схемы вертикальных цилиндрических двухступенчатых редукторов приведены на рис. 6.2.

Рис. 6.2. Кинематические схемы двухступенчатых цилиндрических вертикальных редукторов:

а – выполненного по развернутой схеме (трехосного); б -с оосного

Наиболее компактными среди редукторов с неподвижными осями валов являются многопоточные редукторы, в которых поток мощности разветвляется от шестерни быстроходной ступени на ряд потоков и, пройдя через промежуточные валы, переходит на колесо тихоходной ступени, откуда снимается с учетом потерь мощности двигателя.

Многопоточные редукторы по сложности изготовления приближаются к планетарным , однако передаточные числа планетарных редукторов значительно выше, поэтому многопоточные редукторы имеют ограниченное применение. Их используют в случае необходимости симметричной компоновки привода относительно его продольной оси.

Двухступенчатые цилиндрические редукторы обычно приме­няют в широком диапазоне передаточных чисел: по ГОСТ 2185-66 u =6,3 ÷ 63. Крупные двухступенчатые цилиндрические редукторы, выпускаемые НКМЗ, имеют u = 7,33 ÷ 44,02.

От целесообразной разбивки общего передаточного числа двухступенчатого редукторапоего отдельным ступеням в значительной степени зависят габариты редуктора, удобство сма­зывания каждой ступени, рациональность конструкции корпуса и удобство компоновки всех элементов передач. Дать рекомен­дации разбивки передаточного числа, удовлетворяющие всем указанным требованиям, невозможно, и поэтому все рекомен­дации следует рассматривать как ориентировочные.

Ниже приведена разбивка передаточных чисел для некоторых двухступенчатых редукторов, выпускаемых НКМЗ:

Типоразмер

редуктора

u . . .

8,05

9,83

10,92

12,25

13,83

15,60

3,950

20,49

22,12

23,15

u Б . . .

2,30

2,808

3,125

Суммарное межосевое

расстояние а с, мм

Передаточное

число - u Р

Номинальный крутящий момент

на выходном валу, Нм

Масса редуктора

в кг .

20(А1 )

32(А1 )

57 (А1 ),95

Необходимо отметить, что, если в редукторах типа 1Ц2У старой конструкции угол наклона зубьев составлял 8 0 06 " 34 " (cos β =0,9900), суммарное число зубьев 99 и 198, степень точности по 8 классу и наружными ребрами жесткости корпуса, то в редукторах новой конструкции угол наклона зубьев увеличенных до11 0 31 " 42 " (cos β =0,9900) и суммарное число зубьев составляет 49; 98; 196, степень точности зубчатых колес по ГОСТ 1643-81 доведены до 7 класса, а также применены корпуса новых конструкций.

Такая существенная модернизация позволяет повысить надежность, долговечность и улучшить квалиметрические характеристики выпускаемых редукторов и привести в соответствие международному стандартуISO 6336.

Если у редукторов типа Ц2 (Ц2Ш) быстроходная ступень представляла раздвоенную косозубую передачу (разнесенного шеврона), а тихоходная ступень – косозубую передачу до a ω T =710 мм и шевронную свыше a ω T >800 мм, то современные редукторы Российской Федерации имеют другие решения. При этом профессором Г.А. Снесаревым утверждалось, что раздваивать тихоходную ступень нецелесообразно.

Редукторы Санкт-Петербургского ПО «Эскалатор» типа Ц2 допускают применение в кранах с реверсированием, зубчатой пары быстроходной ступени, шевронная, с углом наклона β =29 0 32 " 29 " , а тихоходная ступень – раздвоенная косозубая с углом наклона β =8 0 6 " 34 " .

Внешний вид цилиндрического трехступенчатого горизонтального узкого редуктора типа Ц3У мало отличается от Ц2У, поэтому приведена краткая техническая характеристика (табл. 5) Ц3У.

Таблица 5

Типоразмер

редуктора

Суммарное межосевое

расстояние а с, мм

Передаточное

число - u Р

Номинальный крутящий момент

на вых . валу, Нм

Масса редуктора

в кг .

Конические редукторы

Конические зубчатые редукторы применяются для передачи вращающего момента между валами, оси которых пересекаются под некоторым углом, как правило, равным 90° (рис.7).

Рис.7. Конструкции конических редукторов: а - обыкновенная, б - кинематическая схема, в - специальная: 1 - стакан ведущего зубчатого колеса,

2 - шлицевой фланец, 3 - ведущее зубчатое колесо, 4 - картер, 5 - суфлер, 6 - стакан ведомого зубчатого колеса, 7 - шлицевой фланец,

8 - ведомое зубчатое колесо, 9 - смотровой люк, 10 - магнитная пробка, 11 - заглушка (место установки термодатчика температуры масла)

В современных конических редукторах колеса выполняют с круговыми зубьями. Во избежание появления на шестерне отрицательной осевой силы, затягивающей шестерню в зацепление, целесообразно, чтобы направление вращения зубчатого колеса и направление наклона линии зуба колеса совпадали.

Передаточное число и одноступенчатых конических редук­торов с прямозубыми колесами,какправило,не выше трех; в редких случаях u = 4. При ко сых или криволинейныхзубьях u = 5 (в виде исключения и = 6,30).

У редукторов с коническими прямозубыми колесами до­пускаемая окружная скорость (по делительной окружности среднего диаметра) v ≤ 5 м/с . При более высоких скоростях рекомендуют применять конические колеса с круговыми зубьями, обеспечивающими более плавное зацепление и большую несу­щую способность.

Если в редукторе требуется осуществить весь набор передаточных чисел, то рекомендуется предусмотреть два типа корпуса: широкий при u = 1…2,8 (К1Ш) и узкий при u = 3,15…5. Распространенное значение угла наклона β П =35 0 .

Колесо располагают между опорами, а шестерню – консольно (рис.8). Установка между опорами значительно сложнее, для чего делают стакан с окном, что позволяет уменьшить длину редуктора.