Пассивный дом: энергоэффективные технологии. Модульные дома для постоянного проживания (63 фото): эволюция от угловатой бытовки до элитного жилья Модульный энергосберегающий дом

Расчитайте приблизительную стоимость строительства энергоэффективного дома, используя строительный калькулятор .

Что же такое энергоэффективный дом?

 Это дом, в котором:

  • обеспечиваются минимальные потери тепла через ограждающие конструкции за счет увеличения толщины теплоизоляции стен и применения эффективных современных утеплителей
  • применяются окна и наружные двери с высоким сопротивлением теплопередачи
  • обеспечивается высокая герметичность здания и контролируется весь воздухообмен с помощью приточно-вытяжных вентиляционных систем с рекуперацией тепла, что снижает потери тепла при вентиляции помещения
  • Выполнение вышеуказанных условий обеспечивает в доме низкое и сверхнизкое энергопотребление. В Германии хорошими показателями энергоэффективного дома считаются, когда на 1 м² отапливаемой площади в год расходуется не более 1,5…3 литра условного топлива, т.е. не более 15...30 кВт ч/м² в год.

    По теории немецких ученых, в любой местности есть свои специфические (для данной местности) природные возобновляемые источники, которые в случае низкого энергопотребления могут полностью заменить традиционные источники энергоресурсов и обеспечить комфортное проживание в доме.

    Низкое энергопотребление дома дает возможность использовать возобновляемые источники энергии окружающей среды. При этом источники энергии могут быть различных видов: геотермальная энергия Земли, солнечная энергия, энергия ветра, энергия воды. В приморской зоне, например, ветрогенераторы и приливные электростанции . В горной местности - ветрогенераторы и геотермальные системы . В равнинной местности - геотермальные, солнечные установки и т.д. Такое использование окружающей среды является экологически безопасным, обеспечивает сохранность окружающей среды, а самое главное, дает независимость от постоянно растущих цен на энергоресурсы.

    Несмотря на высокую стоимость оборудования, необходимого для получения тепла из возобновляемых источников энергии, оно становится конкурентоспособным традиционному оборудованию, работающему на газе, электричестве, дровах и угле, так как текущие эксплуатационные затраты минимальны и практически не зависят от роста цен. К тому же за последнее время стоимость этого оборудования, которое в недалеком прошлом была фантастической, значительно снизилась и с каждым годом продолжает снижаться.

    Строительство индивидуальных малоэтажных энергоэффективных жилых домов в России

    В настоящее время, индивидуальные малоэтажные энергоэффективные дома для большинства населения России являются несбыточной мечтой. Единичные экземпляры, построенные в последнее время, по стоимости (более 100 тыс. руб./м²) значительно превышают стоимость обычных домов, рассчитанных по действующим в России нормам.

    Специалистам ООО «ИнтерСтрой» была поставлена задача, разработать проект и построить опытный образец энергоэффективного индивидуального малоэтажного дома, по стоимости, не превышающей среднюю стоимость обычного загородного дома (ориентировочно не более 60 тыс. руб./м²).

    В дальнейшем, по итогам мониторинга эксплуатационных свойств строящегося здания, планируется продолжить оптимизацию затрат и снизить стоимость строительства еще на 10-15%. Такое условие необходимо для реализации массового строительства домов такого класса в местности с ограниченными энергоресурсами (отсутствие электричества, газа).

    Предварительный выбор основных архитектурных и технических решений

    До принятия основного варианта «пилотного проекта» индивидуального малоэтажного жилого дома, специалистами ООО «Институт пассивного дома», были проанализированы несколько вариантов планировочных и конструктивных решений, а также сделаны предварительные расчеты для подбора видов утеплителей и их толщин.

    С целью снижения стоимости дома, была принята прямоугольная форма дома в плане, позволившая минимизировать объем наружных стен на единицу площади здания.

    Особое внимание было уделено выбору конструкции наружных стен. В результате сравнения различных материалов (кирпич, пеноблоки, деревянный каркас и т.д.), в качестве несущих и ограждающих конструкций, было решено использовать монолитные железобетонные конструкции. Бетонные стены имеют плотную структуру, что позволяет более качественно выполнить требуемую герметизацию внутреннего объема, необходимого для контроля и управления воздухообменом с целью минимизации тепловых потерь и максимального сохранения тепла (до 80%). Также обеспечивается высокая несущая способность при минимальных толщинах, что существенно снижает объем конструкций и уменьшает стоимость и сроки выполнения работ.

    В качестве утеплителя, среди огромного многообразия материалов представленных на сегодняшний день (жесткие, мягкие, минеральные, синтетические, «задувные» и т.п.), был выбран плитный минераловатный утеплитель нового поколения, производимый компанией «SAINT-GOBAIN» . Кроме того, была достигнута договоренность о совместной разработке с компанией «SAINT-GOBAIN» узлов крепления утеплителя (толщиной 400 мм и более) к бетонной поверхности наружных стен.

    Внешний вид здания

    Основные проектные решения здания

    Архитектурно-планировочные решения

    Архитекторами была принята модульная концепция планировки здания, при использовании которой, можно реализовать примыкание модулей в различных направлениях.

    Модуль представляет квадрат с внутренними размерами 9,6×9,6 метров общей площадью около 90 м². Квадратная форма была принята для снижения материалоемкости наружных дорогостоящих стен из расчета на 1 м² площади.

    Модульная планировка дает возможность строить дома площадью: 90 м², 135 м², 180 м², 225 м², 270 м² и т.д.

    Фундамент

    Фундамент выполнен в виде монолитной железобетонной плиты толщиной 300 мм, cтены подвального этажа выполнены из монолитного железобетона толщиной 150 мм.

    Конструкции стен первого, второго и третьего этажей

    Наружные стены – несущие, выполнены из монолитного железобетона толщиной 150 мм с последующим утеплением минераловатными плитами, с наружной отделкой вентилируемыми фасадами и частично штукатурными фасадами. Внутренние стены, кроме двух простенков лестницы и первого простенка коммуникационной шахты, могут выполняться из любых стеновых материалов по желанию заказчика (кирпич, пазогребневые блоки, ГКЛ и т.п.).

    Перекрытия

    Междуэтажные перекрытия - безбалочные монолитные железобетонные, толщиной 160 мм, с опорой на наружные стены, простенки лестницы и коммуникационной шахты. Монолитное перекрытие с большим пролетом дает возможность архитекторам, при оформлении интерьера, выполнить любую индивидуальную планировку и удовлетворить самые строгие запросы заказчика.

    Кровля

    Кровля принята частично не эксплуатируемой с односкатным радиусным закруглением с внутренним водостоком и частично эксплуатируемой с плоским скатом. Утепление радиусной кровли принято из минераловатных плит «ISOVER» толщиной 600 мм. Утепление плоской кровли – 450 мм экструзивного пенополистирола. Различные решения приняты для того, чтобы показать возможность использования в данном проекте разнообразных видов кровель (как плоских, так и сложных с криволинейным контуром, а также различных видов одно, двух, четырех скатных).

    Тепловая оболочка здания

    Утепление здания начинается с основания под фундаментную плиту утеплителем из экструзивного пенополистирола толщиной 300 мм. Далее осуществляется утепление стен подвала утеплителем XPS толщиной 350 мм. Утепление наружных стен выполнено минераловатными плитами толщиной 400 мм. Для утепления кровли, парапетов и карнизов используются утеплители с малым объемным весом, как плотной структуры, так и неплотной (экструдированный пенополистирол, «ISOVER» и т.п.). Выбор различных материалов теплоизоляции связан с тем, что утеплению подлежат конструкции, работающие в разных условиях (фундамент, стены подвала, наружные стены, кровля).

    Для крепления полужесткого утеплителя на стенах разработаны 2 варианта подсистем вентилируемого и «мокрого» фасада. Одна подсистема состоит из двутавровых балок, выполненных из ОSB, установленных вертикально, с заполнением пространства между фермами утеплителем типа «ISOVER». Вторая - из металлических кронштейнов и деревянных брусков, выполненных в виде каркаса, с заполнением утеплителем типа «ISOVER». Совместно с компанией «Saint-Gobain» продолжаются разработки и других видов унифицированных подсистем с целью их удешевления и улучшения характеристик (для возможности крепления утеплителя толщиной 400 мм, 500 мм и более).

    Наружное остекление и двери

    В связи с тем, что тепловой расчет экспериментального дома производился по стандартам Германии, архитекторам была поставлена сложная задача. При проектировании остекления дома строго учитывалась ориентация дома по сторонам света. Минимальное остекление принято на северной стороне, максимальное - на южной. В жаркое летнее время на фасаде дома предусмотрена система автоматической солнцезащиты. С целью снижения теплопотерь предусмотрен один вход. Применяемые окна и двери должны удовлетворять следующим требованиям проекта: Rо = 1,19 – 1,20 (м² С)/Вт.

    Наружные декоративные элементы фасадов

    Имеются различные технические решения, которые позволяют снять проблемы промерзания через эти элементы. Однако они нередко дороги и использование их в строительстве приведет к излишнему удорожанию. Поэтому в данном проекте элементами отделки фасада являются различные сочетания вентилируемого фасада и наружной фасадной штукатурки. Имеющиеся в настоящее время на строительном рынке разновидности этих материалов позволяют удовлетворить вкус самого требовательного заказчика.

    Умелое сочетание различных видов отделки вентилируемых фасадов, использование различных цветов наружной окраски участков стен, а также применение разных конструкций кровли позволяет архитекторам предложить заказчикам большое разнообразие не похожих друг на друга домов.

    Внутренняя планировка

    Все помещения с максимальным пребыванием людей сосредоточены с южной стороны, где возможно максимальное остекление. Помещения технического и бытового назначения располагаются в основном с северной стороны, где наружное остекление отсутствует или оно минимальное. От помещений с двойным светом решено было отказаться, ввиду значительного ухудшения теплотехнических характеристик здания.

    Инженерное оборудование дома

    Водоснабжение

    На территории участка предусмотрена скважина. Скважина обеспечивает все потребности дома. Автоматика управления насосом и все оборудование для подачи воды находится в колодце, оборудованном над оголовком скважины.

    Внутри здания в подвале предусмотрен узел ввода, оборудованный необходимой запорной арматурой, фильтрами тонкой очистки воды и счетчиками расхода воды.

    Подогрев горячей воды осуществляется совместно с помощью теплового насоса и солнечных коллекторов, а в случае отказа одной из систем – подогрев обеспечивается с помощью резервного источника (в данном проекте – газовый котел).

    В случае поломки насоса, в доме предусмотрен аварийный запас питьевой воды в объеме 1000 литров.

    Водостоки и ливневая канализация

    Кровля состоит из плоской части с площадью около 45 м² и односкатной с переменным уклоном - 75 м². На плоской кровле сток воды осуществляется по уклонам в сторону воронок, расположенных в углах здания. На наклонной кровле сток воды также осуществляется по уклонам к водосточным воронкам, находящимся в самых нижних точках по углам здания.

    Вся отведенная дождевая и талая вода направляется в дренажные колодцы пристенного дренажа дома.

    Возможно применение на плоской кровле внутренних водостоков с накопительной емкостью дождевой воды в подвале или заглубленной емкости в земле (для использования на полив).

    Канализация

    Проектом предусмотрены два вида канализации:

    1. Для подвала предусмотрена напорная канализация с использованием установки СОЛОЛИФТ (для санузла, душевых кабин и трапа сбора воды с пола моечного помещения и сауны) и дренажного насоса (для откачки воды из приямка технического помещения в процессе эксплуатации).

    2. Для остальной части дома предусмотрена самотечная канализация с одним вертикальным стояком в технологической шахте, горизонтальным участком под потолком подвала и выпуском из здания в подвале на высоте 1 м от чистого пола.

    Самотечная канализация выводит бытовые стоки в септик. Септик марки «Тверь», предусмотренный в данном проекте, расположен в 3-х метрах от северной стены дома.

    Отопление

    Изначально в данном проекте ставилась задача использования нетрадиционных, экологически чистых, возобновляемых энергетических источников тепла. Было принято использовать в качестве энергетического источника тепловые насосы (использующие геотермальное тепло Земли) и солнечные коллекторы, использующие энергию Солнца. Вырабатываемое этими установками тепло, по расчетам организации ООО «Компания ЭНСО ИНТЕРНЭШНЛ», достаточно для подогрева воды и обеспечения дома теплом на протяжении всего года. В связи с тем, что теплопотери энергоэффективного дома значительно ниже, чем в обычном доме, то требуемая мощность тепловых установок не превышает 10 кВт.

    Обеспечение получения этой мощности возможно с двух скважин общей глубиной около 200 м (50 Вт с каждого погонного метра скважины на 200 метров = 10 кВт).

    В качестве резервной энергетической установки принят газовый котел (возможны и другие виды энергетических установок: котлы, работающие на дровах, угле, дизельном топливе, электричестве и т.д.).

    Проект отопления с помощью совместной работы теплового насоса и солнечного коллектора выполнен организацией ООО «Компания ЭНСО ИНТЕРНЭШНЛ».

    В данном проекте для отопления и ГВС предложена модульная система TYRRO c геотермальным грунтовым (горизонтальным или вертикальным) теплообменником и функцией «freecooling» в летнее время.

    Солнечные коллекторы предлагается ставить на специальных кронштейнах на плоской кровле с южной или юго-западной стороны здания. Их площадь определяется в процессе проектирования, исходя из архитектурных и инженерных соображений. Солнечное тепло в летнее время будет направлено на подогрев грунта в месте установки грунтового теплообменника, а также на подогрев воды в бассейне и воды для полива растений. В зимнее время часть низкотемпературного тепла будет направлено на подогрев теплового насоса.

    Также предусматривается подогрев воздуха через систему вентиляции в зимнее время, и охлаждение в летнее время. Во время, когда тепловой насос будет нагревать воду, с другой стороны насоса в испарительном контуре (коллектор, находящийся в земле) будет охлаждаться грунт, повышая эффективность охлаждения в режиме «freecooling» .

    Вентиляция

    В настоящем проекте дома предусмотрена принудительная вентиляция с применением приточно-вытяжных вентиляционных установок с рекуперацией тепла. Применение принудительной вентиляции имеет как достоинства, так и недостатки.

    Недостатками этой системы, по сравнению с естественной вентиляцией, являются:

  • постоянная работа вентиляционного оборудования и шум от его работы
  • большие единовременные затраты на оборудование и его последующее сервисное техническое обслуживание
  • необходимость в замене фильтров очистки воздуха
  • Достоинством является - возможность качественной очистки подаваемого воздуха, что является важным показателем для здоровья людей, особенно страдающих аллергическими и легочными заболеваниями. Чистота окружающего воздуха, как в городе, так и в сельской местности, оставляет желать лучшего. В городе - копоть, отработанные газы машин и т.п. В сельской местности - микрочастицы от цветения растений, вызывающих аллергические заболевания и т.п.

    Контроль и управление воздухообменом дает возможность обеспечить в любом помещении, в зависимости от ситуации, поступления достаточного количества воздуха, соответственно и кислорода, что качественно улучшает работу организма человека, особенно его мозга.

    Возможность рекуперации тепла от уходящего в атмосферу воздуха дает главную экономию энергопотребления. Современные установки рекуперации позволяют возвращать до 90% тепла, выбрасываемого из дома вместе с воздухом в системах традиционной естественной вентиляции. Это позволяет значительно снизить эксплуатационные затраты по теплу и дает значительную экономию бюджета.

    Для обеспечения в доме вентиляции в случае отключения электричества, предусмотрена система естественной вентиляции. Для обеспечения ее работы и возможности циркуляции воздуха предусмотрены окна с режимом микропроветривания.

    Для отвода отработанных газов от газового котла, являющегося резервным источником тепла, предусмотрен отдельный дымоход с выходом на крышу. Забор воздуха для работы котла осуществляется с улицы, а не из помещений.

    Электрика

    Согласно техническим условиям, на участок, где строится дом, выделено 10 кВт электроэнергии. Подключение дома осуществляется от распределительного электрического щита, установленного на столбе освещения.

    В доме имеется свой распределительный щит. Предусмотрен стабилизатор напряжения. Горизонтальная разводка кабельных линий осуществляется на потолке (в кабель-каналах, лотках, в трубках ПНД). Вертикальная разводка питающих этажных кабельных линий - в технологической шахте в кабель-канале, а также скрытая по стенам, в штрабе, с последующей штукатуркой и окраской. Для подключения оборудования принята отдельная питающая линия.

    Предусмотрено резервное электрообеспечение от небольшого дизельного генератора, который обеспечивает работу инженерного оборудования в случае аварийного отключения. Подключение и работа генератора происходит в автоматическом режиме и рассчитана на 8-10 часов бесперебойной работы. За это время все инженерные системы должны быть переведены в специальный режим или отключены (в зависимости от назначения того или другого оборудования).

    Заземление

    В доме предусмотрено заземление, принятое строительными нормами и правилами.

    Молниезащита

    В доме, для защиты в летнее время от молнии, предусмотрена молниезащита, которая соответствует действующим в России требованиям безопасности.

    Эксплуатационные затраты и преимущества
    энергоэффективного дома

    Учитывая непрекращающийся в России рост цен на коммунальные услуги и энергоресурсы, дома такого класса дают возможность их владельцам значительно легче пережить повышающиеся затраты на услуги ЖКХ.

    Представленный ниже рост цен на электричество и газ, не говоря о росте стоимости горячей воды, технического обслуживания и эксплуатации жилья показывает, что он в разы превышает статистический рост зарплаты среднего работающего россиянина. В случае, сохранения имеющейся динамики роста цен на услуги ЖКХ и роста средней зарплаты, в течении нескольких лет, оплата коммунальных услуг составит существенный, а может быть и основной объем расходов в бюджете рядовых российских граждан.

    Динамика фактического роста цен на газ и электричество
    с 2004 по 2014г.г. и, в случае сохранения имеющейся динамики
    роста цен, на период с 2014 по 2024г.г.

    По предварительным расчетам, дополнительные общестроительные затраты на обеспечение энергоэффективности здания и затраты на применение современного дорогостоящего инженерного оборудования, использующего альтернативные источники энергии, при действующих тарифах, оправдываются уже за 5-6 лет эксплуатации. С учетом прогнозируемого роста тарифов, в ближайшее время, срок окупаемости может сократиться до 2 лет.

    Оценка затрат на отопление обычного дома с энергопотреблением порядка 150 кВт ч/м² год и энергоэффективного дома 25-30 кВт ч/м² год позволяет сделать вывод, что затраты на различные виды энергоресурсов (газ, электричество и т.д.) при эксплуатации энергоэффективного дома снижаются в 5-6 раз, и в случае продолжения роста тарифов, о чем свидетельствуют последние 10 лет, экономия только на отоплении поможет сохранить ваш бюджет.

    Далее приведены расходы на отопление обычного дома с энергопотреблением 150 кВт ч/м² год и энергоэффективного дома с энергопотреблением 28 кВт ч/м² год с одинаковыми площадями по 300 м², и использованием различных типов энергоустановок (электрический котел, тепловой насос, газовый котел).

    Расходы при эксплуатации элэктрического котла, руб./год

    Расходы при эксплуатации газового котла, руб./год

    Год Обычный дом Энергоэффективный дом
    2024 116 545 21 755
    2019 45 556 8 504
    2014 27 303 5 097
    2009 10 062 1 878
    2004 5 966 1 114

    В заключении

    В процессе проектирования энергоэффективного дома, инженеры и архитекторы компании ООО «ИнтерСтрой», изучали опыт работы, консультировались у специалистов, как отечественных, так и зарубежных организаций, работающих в этом направлении. Многие из достижений и рекомендаций, которые достойны внимания, были реализованы при разработке индивидуального малоэтажного жилого дома серии «ИС-33э» .

    Строительство энергоэффективных домов в России находится на начальной стадии своего развития. В процессе работы над данным проектом стало очевидным, что используемые нами современные достижения, технологические и технические решения - это только малая часть того, что используется в настоящий момент в зарубежных странах.

    Нами запланировано много работы по изучению и внедрению отечественных и зарубежных разработок, которые наиболее оптимально подходят к климатическим условиям России.

    Компанией ООО «ИнтерСтрой» запланировано несколько направлений по строительству энергоэффективных домов. Ниже представлены некоторые из них:

    .

    1. Продолжение поиска наиболее оптимальных архитектурных и технических решений с применением в конструкциях здания различных типов материалов, как традиционных, так и новых, более эффективных материалов для достижения снижения энергопотребления (ниже 28 кВт ч/м² год).

    2. Вести дальнейшую работу по подбору инженерного оборудования и систем, работающих на возобновляемых источниках энергии, а также совмещать их с традиционным оборудованием, работающем на газе, электричестве, дизельном топливе, угле, дровах и т.д.

    3. Завершить в текущем году строительство опытного образца индивидуального малоэтажного энергоэффективного дома (28 кВт ч/м² год), по стоимости, не превышающей среднюю стоимость (по московскому региону) обычного дома.

    4. Произвести на данном объекте (после окончания строительства - следующие 2-3 года) комплексный мониторинг показателей работы инженерных систем и конструкций здания, что позволит:

  • повысить эффективность методик расчета энергоэффективности, применяемых к климатическим условиям России
  • проанализировать используемые строительные конструкции, строительные материалы, инженерное оборудование, технологические и технические решения для оценки возможности их дальнейшего применения
  • получить фактические расходы и эксплуатационные затраты по дому, с соответствующей расшифровкой по каждому направлению (отопление, ГВС, вентиляция, охлаждение, электроэнергия для инженерного оборудования, бытовых приборов и т.д.)
  • подготовить проектные, технические и технологические решения, для возможного снижения энергопотребления при строительстве последующих объектов, обеспечив конкурентоспособную стоимость, по сравнению со стоимостью обычного дом
  • Данные мониторинга необходимы для оптимизации и снижения стоимости строительства и последующих затрат. В свою очередь, снижение стоимости энергоэффективного дома, до стоимости, сопоставимой со стоимостью обычного дома, позволит ему занять достойное место на рынке жилья.

    Очевидно, что для любого Клиента, которому не безразлично его финансовое благополучие в будущем, выбор строительства энергоэффективного дома будет правильным решением .

    Человеку не нужна вещь, ему нужна ее функция. Новый тренд, простая по своей сути мысль, похоже, перевернет в России представление и о загородном строительстве. Особенно, в части ежемесячного отопления дома. Чтобы дом назывался энергоэффективным, нужно, чтобы он обладал двумя свойствами. С одной стороны, быстро прогревался, то есть имел малую энергоемкость. А с другой, как можно дольше сохранял необходимый объем тепла без дополнительного прогрева помещения. Пожалуй, ближе всего по заданным идеальным параметрам к статусу энергоэффективных домов стоят так называемые модульные дома.

    Сергей Катаргин

    Дом произведен на стыке двух технологий, каркасной и СИП. Основной сделан каркас и СИП-панелями обшит для повышения жесткости и увеличение слоя утеплителя. Дома предварительного заводского производства, они рассчитаны на перевозку в составе модулей. Соответственно весь силовой каркас рассчитан на перемещение. Он заранее имеет большую жесткость конструкции чем обычный дом.

    Принцип модульного домостроения был придуман в начале 20 века, когда стояла задача строить быстро. Энергоэффективные свойства таких домов проявились позже, и сегодня стали их уже неотъемлемым свойством.

    Сергей Катаргин

    директор строительной компании модульного домостроения

    Мы находимся в среднем модуле. Этот дом площадью 40 квадратных метров состоит из 3 модулей. Средний модуль стыкуется с крайним вот по этой стене. Под плинтусом идет стык. Предварительно при перевозке модулей торец утепляется минераловатным утеплителем или джутом и при стыковке модулей пропенивается сверху и снизу. И закрепляется дополнительно металлическими стяжками.

    Один из способов увеличить энергоэффективность дома - нарастить тепловой контур здания. Пожалуй, самый популярный стеновой утеплитель - пенополистрол, который в свою очередь может также нести распределенную нагрузку, то есть выступать не только как утеплитель, но и как часть каркасной системы. Иногда его используют в качестве декораций, но при этом он не теряет своих утеплительных свойств. В среднем толщины утеплителя в 320 мм достаточно для уральского климата. Между тем, в модульных домах она может быть и больше. Для увеличенной толщины стен индивидуально рассчитывают параметры силового каркаса еще на стадии проектирования.

    Сергей Катаргин

    директор строительной компании модульного домостроения

    Конечно эти дома в связи с тем, что здесь большой слой утеплителя, будут выгодно отличаться от домов построенных по стандартным технологиям, дополнительно что здесь будет постоянная температура в жару и в холод, здесь присутствует вентиляция с рекуперацией тепла.

    Рекуперация тепла - передача тепла свежему воздуху, которая осуществляется в специальном теплообменнике. Поскольку модульные дома относят к тому типу зданий, где стены однородные и нет мостиков холода, в них требуется обязательная установка вентиляции, причем принудительной. К слову, принудительная вентиляция - это отличительный признак энергоэффективных домов. Модульные дома не исключение. Но для того, чтобы температура приходящего воздуха не влияла на микроклимат в доме, устанавливают также рекуператор. И в помещении, таким образом, никогда не бывает холодно, душно, и нет сквозняков.

    Сергей Катаргин

    директор строительной компании модульного домостроения

    Надо сказать, что модульные дома имеют такой конструктив, который позволяет зданию не зависеть от наличия или отсутствия газа как источника тепла. К примеру, каменные дома совсем не топить нельзя. Но топить кирпичные стены с помощью электрокотла неоправданно дорого. А между тем, в модульных домах на время отъезда отопление можно отключить совсем. А по приезде хозяев электрический радиатор быстро нагреет комнату. А газ можно использовать в баллонах для приготовления еды. К слову, подключение дома к газовой магистрали стоит от 100 до 300 тысяч рублей. А отопление 40 квадратов модульного дома зимой при помощи электрорадиаторов не более 900 рублей в месяц. Арифметика ошеломляющая, особенно когда уже известно, что газ точно будет дорожать.

    5 10 15 20 25 30 50 100 Все

    • Энергонезависимый дом из конопли оставляет минимальный углеродный след

      Лондонское архитектурное бюро Practice Architecture построило дом на одну семью с использованием сборных панелей, в состав которого вошли волокна конопли. Заказчики проекта владеют фермой в Кембриджшире, на которой лен и конопля выращиваются для производства биопластика. Итогом усилий строителей и дизайнеров стало энергонезависимое здание на

      ...
    • «Вертикальный город» будущего представлен Luca Curci Architects

      Итальянская архитектурная фирма Luca Curci Architects представила на Knowledge Summit 2019 в Дубае футуристичный концепт «Вертикального города» (Vertical City). Предполагается, что он будет состоять из модульных с нулевым потреблением энергии и фундаментом, заложенным на дне океана.

    • Модульные дома на сваях Stilt Studios собирают дождевую воду и питаются солнечной энергией

      Переехавший на Бали немецкий архитектор Алексис Дорньер разработал проект небольших автономных домов, которые можно легко демонтировать и перевозить с места на место. Stilt Studios – это модульные домики на сваях, строительство которых значительного ущерба ландшафту и местной экосистеме.

      На Бали проблема

      ...
    • Автономный экодом Casa Nell`Orto «парит» над огородными грядками

      Итальянская архитектурная студия I.DA.iMdA завершила работу над проектом дома, который как будто парит над землей и минимально воздействует на деревенский ландшафт. Здание Casa Nell`Orto, что переводится как «дом на плантации», имеет площадь 84 кв.м. и органично вписано в проект ранее разбитого огорода.

      ...

    • Исследование: энергоэффективные дома экономят деньги в долгосрочной перспективе

      Потребители и застройщики еще недостаточно полагаются на возможную выгоду домов с нулевым расходом электроэнергии из-за высокого уровня авансовых расходов, но такое отношение к вопросу может оказаться недальновидным, утверждает недавнее исследование.

      Правительство США изменило политику

      ...
    • «Умный» модульный дом на солнечной энергии стал призером Solar Decathlon 2018

      Ближневосточный конкурс Solar Decathlon 2018 – ответвление основного соревнования по созданию энергоэффективных домов на солнечных батареях, проводимого в США.

      Победа в конкурсе Solar Decathlon 2018 далась студентам Политехнического университета Вирджинии не легко. Чтобы создать FutureHaus (Дом Будущего), им понадобились годы исследований и улучшений, случайный пожар и восстановление, а затем месяц жизни в пустыне в

      ...
    • Project HOPE: купольный дом, который производит энергии больше, чем потребляет

      Калифорнийская некоммерческая организация Green New World доказала на наглядном примере, что строительных технологий может и должно быть более экологичным, здоровым и энергетически автономным. Компания создала концептуальный дом House of Peace (также известный под именем Project HOPE) – образец жилого дома с автономным и регенеративным энергообеспечением с рекордно низким

      ...
    • Китайский дом будущего «Living Garden» получил полную автономию за счет энергии солнца

      Пекинское архитектурное бюро MAD Architects в партнерстве с компанией по производству энергии из возобновляемых источников Hanergy завершило работу над прототипом «дома будущего» - полностью энергетически автономного павильона, в котором стирается грань между отдыхом в стенах дома и на свежем воздухе.

      Обширная изогнутая крыша «Обитаемого сада» покрыта

      ...
    • 3D-печатные мобильные экодома составят деревню для работников Кремниевой долины

      На калифорнийском побережье предполагается возвести рекреационную жилую зону Walden Monterey, главными обитателями которой станут работники Кремниевой долины. Девелопер участка Ник Джекогян решил очаровать потенциальных покупателей жилья красотами пейзажей полуострова Монтерей, предложив им передвижное жилье – уютные маленькие хижины, построенные с применением всех передовых экологически чистых и энергоэффективных

      ...
    • Солнечная энергия и водород обеспечат полную автономию домов в Германии

      На рынок Германии в продажу поступили многофункциональные энергетические системы, предназначенные для обеспечения электричеством, горячим водоснабжением и отоплением частных домов.

      Продукт под названием «Picea» производится немецкой компанией HPS Home Power Solutions GmbH и способен сделать домохозяйство практически

      ...
    • sCarabane: стильный кемпер-трансформер с солнечными панелями и ветряком

      Миниатюрные дома на колёсах достаточно удобны для отдыха и поездок на дальние дистанции. Хорошим примером может послужить немецкий кемпер Dethleffs , оборудованный солнечными панелями и большой батареей, обеспечивающими автодому полную

      ...
    • На украинский автономный модульный дом поступило 8000 предзаказов

      Во время строительства 10-ти звёздочного (по меркам энергосбережения) дома, компании The Sociable Weaver и Clare Cousin Architect

      ...
    • В Японии умные дома обеспечат себя энергией за счет искусственного фотосинтеза

      Японская компания TOKYO Iida Group протестирует жилой дом, который использует углекислый газ (СО2) для искусственного фотосинтеза.

      Опыты будут проводиться совместно с сотрудниками Университета Осаки. Специалисты стремятся создать , которые смогут не только снизить количество поступающего в окружающую среду CO2, а и

      ...
    • Дома из солнечных блоков будут сами для себя генерировать энергию

      Компактный передвижной домик от Tesla перемещается с

      ...
    • Самораскладывающийся модульный дом от TEN FOLD легко транспортируется, расширяется и может быть полностью автономным (видео)

      Основанная в Великобритании компания Ten Fold Engineering разработала модульную, саморазвертывающуюся систему, которая может превратиться из куба размером с грузовик в функционирующее здание менее чем за десять минут.

      Эта идея похожа на выдумку из научно-фантастического романа, но в основе ее очень простая концепция. Все происходит по принципу «собери себя сам», владелец должен всего лишь нажать

      ...
    • Дом из мешков с землей и глиной Earthbag – опыт украинского первопроходца

      Как построить экодом с минимальными вложениями? Легко! Потребуется лишь тысяча мешков глины, немного дерева, ни грамма цемента и все это будет прекрасно стоять без всякого фундамента. Украинец Олег Почигайло решил вернуться к старинным технологиям строительства жилья, которые немного

      ...
    • Создана гибридная эко-крыша, сочетающая 5 энергосберегающих технологий

      Малазийские инженеры разработали кровельную установку, которая способна одновременно генерировать энергию солнца и ветра , а также собирать дождевую воду, вентилировать и освещать помещения.

      Исследователи из Университета Малайи (Малайзия) сконструировали крышу, которая призвана помочь решению основной энергетической проблемы

      ...
    • Батареи Tesla Powerwall 2 станут стандартом в новых домах Австралии

    • В Дубае строится вращающийся небоскрёб Dynamic Tower

      Современный мир полон уникальных, привлекающих внимание зданий, но строящийся в Дубае небоскрёб станет действительно рывком в развитии . Ранее сообщалось, что итальянский архитектор израильского происхождения Дэвид Фишер предложил возвести небоскрёб под названием ...

    • Пассивный дом «Солнечная ферма» сам себя обеспечит энергией

      Американская компания Deltec разработала и приступает к продажам новой линейки полностью энергетически независимых домов. Стартовая цена составляет 62 000 долларов.

      В наши времена постоянно растущих тарифов и меняющегося климата потреблением энергии становятся золотым стандартом экологического строительства. Если вы

      ...
    • Роскошный жилой комплекс с функцией электростанции построят на Карибах

      В 2020 году в Доминиканской республике планируют построить футуристичный жилой комплекс EXOSPHERE, который будет самостоятельно обеспечивать себя электричеством. Здание, разработанное бюро Richard’s Architecture + Design (RA+D), сможет получать энергию от , ветра и геотермальных установок.

      Основную часть энергии EXOSPHERE

      ...
    • Smart Green Tower – многоэтажный экодом, питающий энергией соседние здания

    • Как построить маленький домик из соломенных панелей и глины знают на Ивано-Франковщине

      Мастер художественной обработки металла

    В целях экономии природных и энергетических ресурсов человечеством разработаны комплексные меры по утеплению зданий и доведению уровня тепловой изоляции до значения близкого к абсолютному. В этом материале будет раскрыта суть пассивного дома как современного и экономного типа жилья.

    Понятия пассивности и энергоэффективности

    Наш обзор обойдет стороной общепринятый перечень преимуществ и технических показателей. Например, энергоэффективным считается строение, потеря тепла в котором не превышает 10 кВт·ч с каждого квадратного метра в течение года, но о чем это должно сказать читателю? Если пересчитать, то за год с небольшого (до 150 м 2) дома уходит примерно 1,5-2 МВт энергии, что сопоставимо с энергопотреблением обычного коттеджа за один зимний месяц. Столько же потребляют 2-3 лампы накаливания по 100 Вт, включенные постоянно в течение одного года, что эквивалентно 200 м 3 природного газа.

    Столь малое энергопотребление позволяет в принципе отказаться от системы отопления в доме, используя для обогрева тепло, выделяемое человеком, животными и бытовыми приборами. Если дом не требует целенаправленных затрат энергии на работу отопительных установок (или требует, но незначительный минимум), такой дом называют пассивным. Точно так же пассивным может называться дом с весьма высокими потерями тепла, потребность в котором восполняется собственной энергетической установкой, работающей на возобновляемых источниках энергии.

    Так что энергоэффективный дом не обязательно претендует на звание пассивного, справедливо и обратное. Дом же, который не только покрывает собственные энергетические нужды, но и передает какой-либо вид энергии в общественную сеть, называют активным.

    В чем основная идея пассивного дома

    Все три вышеперечисленных понятия принято объединять: пассивный дом обладает максимально расширенным комплексом мер по обеспечению энергетической автономности. В конце концов, никому не интересно годами тестировать свое жилище, добиваясь норматива по теплопотерям для получения почетного звания. Важно, чтобы внутри было сухо, тепло и комфортно.

    Существует мнение, что сегодня любая новостройка должна возводиться по технологии пассивного дома, благо, что технические решения есть даже для многоэтажных зданий. Это не лишено смысла: затраты на обслуживание дома за период междуремонтной эксплуатации обычно даже выше затрат на строительство .

    Пассивный же дом при более объемных первоначальных вложениях практически не требует затрат весь срок службы, который, к тому же, превышает срок эксплуатации обычных зданий за счет абсолютной защиты несущих и ограждающих конструкций в комплексе с самыми современными и технологичными решениями строительства и ремонта.

    Главной технической особенностью пассивного дома можно назвать непрерывный контур теплоизоляции, от фундамента до кровли. Такой «термос» хорошо сохраняет тепло, но не все материалы пригодны для его устройства.

    Материалы для теплоизоляции

    Пенополистирол в таких объемах неприменим, он горюч и токсичен. В ряде проектов это решается огнезащитным слоем у несущего целика и под фасадной отделкой, что ведет к неоправданному удорожанию. Использование стеклянной и минеральной ваты также не решает проблему. В ней, так же как и в пенополистироле, активно селятся вредители (насекомые и грызуны), да и срок службы у ваты в 2-3 меньше, чем у самого пассивного дома.

    Пригодный для целей пассивного дома материал — пеностекло . Краткий свод характеристик: наименьшая теплопроводность из известных материалов широкого потребления, полная экологичность за счет инертности стекла, простая обработка и хорошая способность к склеиванию. Из минусов — высокая цена и сложность производства, но материал однозначно стоит своих денег.

    Менее дорогостоящий, но пригодный для утепления пассивного дома материал — вспененный полиуретан. Технически такие дома пассивными назвать нельзя, их теплопотери составляют 30-50 кВт·ч с квадратного метра в год, но и эти показатели вполне приемлемы. Полиуретан может устанавливаться как листовой материал, либо наноситься методом торкрет-оштукатуривания.

    Кровля и теплый чердак

    Другое ключевое отличие пассивных домов — наличие неотапливаемой мансарды или теплого чердака и качественное утепление кровли без мостиков холода. При таком подходе выделяется две границы температур: на перекрытии верхнего этажа и в самой кровле. Благодаря разнесению теплозащиты гарантированно устраняется образование конденсата в утеплителе кровли и существенно снижаются потери тепла.

    Перекрытие верхнего этажа обычно делают каркасным на деревянных балках, пустоты заполняют слоем минеральной ваты средней плотности толщиной в 20-25 см. Перекрытие лучше утеплять листовыми материалами с устройством перекрестного ячеистого каркаса и точной подгонкой плит утеплителя. Все швы и стыки заполняются специальным клеем или монтажной пеной. Особое внимание уделяется устройству защитного пояса в месте опоры стропильной системы на стены.

    Теплый чердак устраивается по принципу рекуперации вентиляционной системы. Каналы вытяжной вентиляции выходят прямо в герметичное чердачное помещение, откуда выводятся через единственное отверстие с принудительным оттоком. Часто этот канал снабжают рекуперационной установкой, передающей часть тепла от вытяжного воздуха приточному.

    Окна, двери и другие места утечек

    С окнами для пассивного дома все просто: они должны быть высокого качества и обязательно сертифицированными для применения в отрасли энергосбережения. Признаками подходящего изделия считаются стеклопакеты с двумя или более камерами, заполненными газом, низкоэмиссионные стекла разной толщины и двойное примыкание стеклопакета к профилю, уплотненное каучуковой лентой. Для дверей важно сотовое наполнение и наличие двойного притвора по всему периметру. Не менее важно соблюдать правила монтажа и защиты мест примыканий.

    Пассивный дом имеет свои особенности устройства фундамента. Для защиты структуры бетона его гидрофобизируют инъекционным способом и дополнительно защищают внешним слоем обмазочной гидроизоляции. Утеплитель опускается на всю глубину фундамента, таким образом цокольный этаж становится второй после теплого чердака буферной зоной.

    Энергообеспечение пассивного дома

    К пассивному дому обычно не подводят газ, для бытовых целей и обогрева полностью хватает однофазной электросети. С электрическими нагревателями все просто: сколько киловатт вложено в дом, столько в нем и остается, КПД составляет почти 99%, в отличие от газовых котлов.

    Но электрическая сеть в качестве единственного источника энергоснабжения имеет массу недостатков, заключающихся по большей части в ненадежности подключения. Часто дома снабжаются достаточно сложной электросетью, включающей аварийный генератор с автозапуском, либо используют для резервной подпитки парк аккумуляторов или солнечные батареи.

    Нагрев воды для бытовых нужд обычно выполняется солнечными коллекторами , преимущественно вакуумными. Вообще автономные источники энергии достаточно разнообразны, среди разновидностей можно подобрать оптимальное решение для объектов с разными условиями.