Применение лазеров в медицинской практике. История создания лазера и применения его в медицине

ЛАЗЕРЫ в медицине

Лазер - устройство для получения узких пучков световой энергии высокой интенсивности. Лазеры были созданы в 1960 г. , СССР) и Ч. Таунсом (США), удостоенными за это открытие Нобелевской пре-мдп 1964 г. Существуют различные типы лазеров - газовые, жидкостные и работающие на твердых телах. Лазерное излучение может быть непрерывным и импульсным.

Сам термин “лазер”- это аббревиатура от английского “Light Amplification by Stimulated Emission of Radiation”, т. е. “усиление света вынужденным излучением”. Из физики известно, что “лазер - это источник когерентного электромагнитного излучения, возникающего в результате вынужденного испускания фотонов активной средой, находящейся в оптическом резонаторе". Для лазерного излучения характерна монохроматичность, высокая плотность и упорядоченность потока световой энергии. Многообразие используемых в наши дни источников такого излучения определяет разнообразие областей применения лазерных установок.

В медицину лазеры вошли в конце 1960-х годов. Вскоре сформировались три направления лазерной медицины, различие между которыми определялось мощностью светового потока лазера (и, как следствие, видом его биологического воздействия). Излучение низкой мощности (мВт) в основном используется в терапии крови, средней мощности (Вт) – в эндоскопии и фотодинамической терапии злокачественных опухолей, а высокой Вт) – в хирургии и косметологии . Хирургическое применение лазеров (т. н. “лазерные скальпели”) основано на прямом механическом воздействии высокоинтенсивного излучения, которое позволяет резать и “сваривать” ткани. Тот же эффект лежит в основе применения лазеров в косметологии и эстетической медицине (в последние годы наряду со стоматологией одна из самых прибыльных отраслей здравоохранения). Однако у биологов наибольший интерес вызывает феномен терапевтического воздействия лазеров. Известно, что низкоинтенсивное лазерное воздействие приводит к таким положительным эффектам, как повышение тонуса, устойчивость к стрессам, улучшение работы нервной, имунной эндокринной систем, устранению ишемических процессов, заживлению хронических язв и многим другим... Лазерная терапия, безусловно, высокоэффективна, но, что удивительно, до сих пор нет четкого представления об ее биологических механизмах! Ученые пока лишь разрабатывают модели, объясняющие этот феномен. Так, известно, что низкоинтенсивное лазерное излучение (НИЛИ) воздействует на пролиферативный потенциал клеток (то есть стимулирует их деление и развитие). Считается, что причина этого– в локальных изменениях температуры, которые могут стимулировать процессы биосинтеза в тканях. НИЛИ также укрепляет системы антиоксидантной защиты организма (тогда как излучение высокой интенсивности, напротив, приводит к массовому появлению активных форм кислорода.) Скорее всего, именно этими процессами и объясняется терапевтическое действие НИЛИ. Но, как уже упоминалось, существует и другой тип лазерной терапии - т. н. фотодинамическая терапия, применяемая для борьбы со злокачественными образованиями. Она основана на использовании открытых еще в 60-е годы фотосенсибилизаторов - специфических веществ, способных избирательно накапливаться в клетках (в основном раковых). При лазерном облучении средней мощности молекула фотосенсибилизатора поглощает световую энергию, переходит в активную форму и вызывает целый ряд разрушительных процессов в раковой клетке. Так, повреждаются митохондрии (внутриклеточные энергетические структуры), существенно меняется кислородный обмен, что приводит к появлению огромного количества свободных радикалов. Наконец, сильное нагревание воды внутри клетки вызывает разрушение ее мембранных структур (в частности внешней клеточной оболочки). Все это в итоге приводит к интенсивной гибели опухолевых клеток. Фотодинамическая терапия - сравнительно новая область лазерной медицины (развивается с середины 80-х годов) и пока еще не столь популярная, как, скажем, лазерная хирургия или офтальмология , однако именно на нее сейчас возлагают основные надежды врачи-онкологи.

В целом можно сказать, что лазерная терапия в наши дни - одна из наиболее динамично развивающихся отраслей медицины. Причем, что удивительно, не только традиционной. Некоторые терапевтические эффекты лазеров легче всего объясняются наличием в организме систем энергетических каналов и точек, используемых при акупунктурных воздействиях. Известны случаи, когда локальная обработка лазером отдельных тканей вызывала позитивные изменения в других частях организма. Ученым еще предстоит ответить на множество вопросов, связанных с целебными свойствами лазерного излучения, что, безусловно, откроет новые перспективы развития медицины в XXI веке.

Принцип действия лазерного луча основан на том, что энергия сфокуси-тэванного светового пучка резко повышает температуру в облучаемом месте и вызывает коагуляцию (свертывание) блологич. ткани. Особенности биологич. действия лазерного излучения зависят m типа лазера, мощности энергии, ее характера, структуры и биологич. ;зойств облучаемых тканей. Узкий световой пучок большой мощности дает возможность производить светокоагу-ляцию строго определенного участка тканей за доли секунды. Окружающие ткани при этом не страдают. Кроме коагуляции биологич. ткани, при большой мощности излучения возможно и взрывное ее разрушение от воздействия своеобразной ударной волны, образующейся в результате мгновенного перехода тканевой жидкости в газообразное состояние под влиянием высокой температуры. Имеют значение вид тканей, пх окраска (пигментация), толщина, плотность, степень наполнения кровью. Чем больше мощность лазерного излучения, тем глубже оно проникает и тем сильнее его действие.

Первыми использовали лазеры для лечения больных глазные врачи, применившие их для коагуляции сетчатой оболочки глаза при ее отслойке и разрыве (), а также для разрушения мелких внутриглазных опухолей и создания оптич. отверстия в глазу при вторичных катарактах. Кроме того, лазерным лучом уничтожают небольшие, поверхностно расположенные опухоли, коагулируют патологич. образования на поверхности кожи (пигментные пятна, сосудистые опухоли и т. д.). Лазерное излучение используют и в диагностич. целях для исследования кровеносных сосудов, фотографирования внутренних органов и др. С 1970 г. лазерный луч начали применять при хирургич. операциях в качестве «светового скальпеля» для рассечения тканей организма .

В медицине лазеры применяются как бескровные скальпели, используются при лечении офтальмологических заболеваний (катаракта, отслоение сетчатки, лазерная коррекция зрения и др.). Широкое применение получили также в косметологии (лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен).

Виды хирургических лазеров

В лазерной хирургии применяются достаточно мощные лазеры, работающие в непрерывном или импульсном режиме, которые способны сильно нагревать биоткань, что приводит к ее резанию или испарению.

Лазеры обычно именуются по типу активной среды, генерирующей лазерное излучение. Наиболее известны в лазерной хирургии неодимовый лазер и лазер на углекислом газе (или СО2-лазер).

Некоторые другие виды высокоэнергетичных лазеров, используемых в медицине, имеют, как правило, свои узкие области применения. Например, в офтальмологии для прецизионного испарения поверхности роговицы глаза применяются эксимерные лазеры.

В косметологии для устранения сосудистых и пигментных дефектов кожи используются КТР-лазеры, лазеры на красителе и на парах меди, для эпиляции - александритовые и рубиновые лазеры.

СО2 - лазер

Лазер на углекислом газе - это первый хирургический лазер, который активно используется с 1970-х годов по настоящее время.

Высокое поглощение в воде и органических соединениях (типичная глубина проникновения 0,1 мм) делает СО2-лазер подходящим для широкого спектра хирургических вмешательств, в том числе для гинекологии , оториноларингологии , общей хирургии, дерматологии , кожно-пластической и косметической хирургии.

Поверхностное воздействие лазера позволяет иссекать биоткань без глубокого ожога. Это также делает CO2-лазер не опасным для глаз, т. к. излучение не проходит сквозь роговицу и хрусталик.

Конечно, мощный направленный луч может повредить роговицу, но для защиты достаточно иметь обычные стеклянные или пластиковые очки.

Недостаток длины волны 10 мкм состоит в том, что очень трудно изготовить подходящее оптическое волокно с хорошим пропусканием. И до сих пор наилучшим решением является зеркальный шарнирный манипулятор, хотя это достаточно дорогое устройство, сложное в юстировке и чувствительное к ударам и вибрации.

Другим недостатком CO2-лазера - это его непрерывный режим работы. В хирургии для эффективного резания необходимо быстро испарять биоткань без нагрева окружающих тканей, для чего нужна высокая пиковая мощность, т. е. импульсный режим. Сегодня в CO2-лазерах для этих целей применяют так называемый "суперимпульсный" режим (superpulse), при котором лазерное излучение имеет вид пачки коротких, но в 2 - 3 раза более мощных импульсов, по сравнению со средней мощностью непрерывного лазера.

Неодимовый лазер

Неодимовый лазер - это самый распространенный тип твердотельного лазера и в промышленности, и в медицине.

Его активная среда - кристалл алюмоиттриевого граната, активированного ионами неодима Nd:YAG, - позволяет получить мощное излучение в ближнем ИК-диапазоне на длине волны 1,06 мкм практически в любом режиме работы с высоким КПД и с возможностью волоконного выхода излучения.

Поэтому вслед за CO2-лазерами в медицину пришли неодимовые как для целей хирургии, так и терапии.

Глубина проникновения такого излучения в биоткани равна 6 - 8 мм и довольно сильно зависит от ее типа. Это означает, что для достижения такого же режущего или испаряющего эффекта, как у CO2-лазера, для неодимового требуется в несколько раз более высокая мощность излучения. А во-вторых, происходит значительное повреждение подлежащих и окружающих лазерную рану тканей, что отрицательно сказывается на послеоперационном ее заживлении, вызывая различные осложнения, типичные для ожоговой реакции - рубцевание, стеноз, стриктура и т. п.

Предпочтительная сфера хирургического применения неодимового лазера - это объемная и глубокая коагуляция в урологии , гинекологии, онкологические опухоли, внутренние кровотечения и т. п. как в открытых, так и в эндоскопических операциях.

Важно помнить, что излучение неодимового лазера невидимо и опасно для глаз даже в малых дозах рассеянного излучения.

Использование в неодимовом лазере специального нелинейного кристалла КТР (калий-титан-фосфат) позволяет удваивать частоту излучаемого лазером света. Получаемый таким образом КТР-лазер, излучающий в видимой зеленой области спектра на длине волны 532 нм, обладает способностью эффективно коагулировать кровенасыщенные ткани и используется в сосудистой и косметической хирургии.

Гольмиевый лазер

Кристалл алюмоиттриевого граната, активированный ионами гольмия, - Ho:YAG, способен генерировать лазерное излучение на длине волны 2,1 мкм, которое хорошо поглощается биотканью. Глубина его проникновения в биоткань составляет около 0,4 мм, т. е. сравнима с CO2-лазером. Поэтому гольмиевый лазер обладает применительно к хирургии всеми преимуществами СО2-лазера.

Но двухмикронное излучение гольмиевого лазера в то же время хорошо проходит через кварцевое оптическое волокно, что позволяет использовать его для удобной доставки излучения к месту хирургического вмешательства. Это особенно важно, в частности, для проведения малоинвазивных эндоскопических операций.

Излучение гольмиевого лазера хорошо коагулирует сосуды размером до 0,5 мм, что вполне достаточно для большинства хирургических вмешательств. Двухмикронное излучение, к тому же, вполне безопасно для глаз.

Типичные выходные параметры гольмиевого лазера: средняя выходная мощность Вт, максимальная энергия излучения - до 6 Дж, частота повторения импульсов - до 40 Гц, длительность импульса - около 500 мкс.

Сочетание физических параметров излучения гольмиевого лазера оказалось оптимальным для целей хирургии, что позволило ему найти многочисленные применения в самых различных областях медицины.

Эрбиевый лазер

Эрбиевый (Er:YAG) лазер имеет длину волны излучения 2,94 мкм (средний ИК-диапазон). Режим работы - импульсный.

Глубина проникновения в биоткань излучения эрбиевого лазера составляет не более 0,05 мм (50 мкм), т. е. его поглощение еще в раз выше, чем у CO2-лазера, и он оказывает исключительно поверхностное воздействие.

Такие параметры практически не позволяют коагулировать биоткань.

Основные направления применения эрбиевого лазера в медицине:

Микрошлифовка кожи,

Перфорация кожи для взятия проб крови,

Испарение твердых тканей зуба,

Испарение поверхности роговицы глаза для исправления дальнозоркости.

Излучение эрбиевого лазера неопасно для глаз, как и у CO2-лазера, и для него также нет надежного и дешевого волоконного инструмента.

Диодный лазер

В настоящее время существует целая гамма диодных лазеров, имеющих широкий спектр длин волн от 0,6 до 3 мкм и параметров излучения. Основными достоинствами диодных лазеров являются высокий КПД (до 60%), миниатюрность и большой ресурс работы (более 10,000 часов).

Типичная выходная мощность одиночного диода редко превышает 1 Вт в непрерывном режиме, а энергия импульса - не более 1 - 5 мДж.

Для получения мощности, достаточной для хирургии, одиночные диоды объединяют в наборы, состоящие от 10 до 100 элементов, расположенные в виде линейки, или к каждому диоду присоединяют тонкие волокна, которые собирают в жгут. Такие композитные лазеры позволяют получать 50 Вт и более непрерывного излучения на длине волны нм, которые сегодня применяются в гинекологии, офтальмологии, косметологии и др.

Основной режим работы диодных лазеров - непрерывный, что ограничивает возможности их использования в лазерной хирургии. При попытках реализовать суперимпульсный режим работы чересчур длинные импульсы (порядка 0,1 с) на длинах волн генерации диодных лазеров в ближнем ИК-диапазоне рискуют вызвать чрезмерный нагрев и последующее ожоговое воспаление окружающих тканей.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Лазеры и их применение в медицине

2. Применение высокоинтенсивного лазерного излучения в хирургии (общие принципы)

3. Световой пробой

Заключение

Список использованной литературы

Введение

Лазеры или оптические квантовые генераторы - это современные источники когерентного излучения, обладающие целым рядом уникальных свойств. Создание лазеров явилось одним из самых замечательных достижений физики второй половины XX века, которое привело к революционным изменениям во многих областях науки и техники. К настоящему времени создано большое количество лазеров с различными характеристиками - газовых, твердотельных, полупроводниковых, излучающих свет в различных оптических диапазонах. Лазеры могут работать в импульсном и непрерывном режимах. Мощность излучения лазеров может изменяться в пределах от долей милливатта до 10 12 -10 13 Вт (в импульсном режиме). Лазеры находят широкое применение в военной технике, в технологии обработки материалов, в медицине, оптических системах навигации, связи и локации, в прецизионных интерференционных экспериментах, в химии, просто в быту и т. д.

Одним из важнейших свойств лазерного излучения является чрезвычайно высокая степень его монохроматичности, недостижимая в излучении нелазерных источников. Это и все другие уникальные свойства лазерного излучения возникают в результате согласованного, кооперативного испускания световых квантов многими атомами рабочего вещества.

Чтобы понять принцип работы лазера, нужно более внимательно изучить процессы поглощения и излучения атомами квантов света. Атом может находиться в различных энергетических состояниях с энергиями E 1 , E 2 и т. д. В теории Бора эти состояния называются стабильными. На самом деле стабильным состоянием, в котором атом в отсутствие внешних возмущений может находиться бесконечно долго, является только состояние с наименьшей энергией. Это состояние называют основным. Все другие состояния нестабильны. Возбужденный атом может пребывать в этих состояниях лишь очень короткое время, порядка 10 - 8 с, после этого он самопроизвольно переходит в одно из низших состояний, испуская квант света, частоту которого можно определить из второго постулата Бора. Излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое, называют спонтанным. На некоторых энергетических уровнях атом может пребывать значительно большее время, порядка 10 - 3 с. Такие уровни называются метастабильными.

Переход атома в более высокое энергетическое состояние может происходить при резонансном поглощении фотона, энергия которого равна разности энергий атома в конечном и начальном состояниях.

Переходы между энергетическими уровнями атома не обязательно связаны с поглощением или испусканием фотонов. Атом может приобрести или отдать часть своей энергии и перейти в другое квантовое состояние в результате взаимодействия с другими атомами или столкновений с электронами. Такие переходы называются безизлучательными.

В 1916 году А. Эйнштейн предсказал, что переход электрона в атоме с верхнего энергетического уровня на нижний может происходить под влиянием внешнего электромагнитного поля, частота которого равна собственной частоте перехода. Возникающее при этом излучение называют вынужденным илииндуцированным. Вынужденное излучение обладает удивительным свойством. Оно резко отличается от спонтанного излучения. В результате взаимодействия возбужденного атома с фотоном атом испускает еще один фотон той же самой частоты, распространяющийся в том же направлении. На языке волновой теории это означает, что атом излучает электромагнитную волну, у которой частота, фаза, поляризация и направление распространения точно такие же, как и у первоначальной волны. В результате вынужденного испускания фотонов амплитуда волны, распространяющейся в среде, возрастает. С точки зрения квантовой теории, в результате взаимодействия возбужденного атома с фотоном, частота которого равна частоте перехода, появляются два совершенно одинаковых фотона-близнеца.

Именно индуцированное излучение является физической основой работы лазеров.

1 . Лазеры и их применение в медицине

Несмотря на общую природу световых и радиоволн, многие годы оптика и радиоэлектроника развивались самостоятельно, независимо друг от друга. Казалось, что источники света - возбужденные частицы и генераторы радиоволн - имеют мало общего. Лишь с середины XX столетия появились работы по созданию молекулярных усилителей и генераторов радиоволн, которые положили начало новой самостоятельной области физики - квантовой электронике.

Квантовая электроника изучает методы усиления и генерации электромагнитных колебаний с использованием вынужденного излучения квантовых систем. Достижения в этой области знаний находят все большее применение в науке и технике. Ознакомимся с некоторыми явлениями, лежащими в основе квантовой электроники и работы оптических квантовых генераторов - лазеров.

Лазеры представляют собой источники света, работающие на базе процесса вынужденного (стимулированного, индуцированного) испускания фотонов возбужденными атомами или молекулами под воздействием фотонов излучения, имеющих ту же частоту. Отличительной чертой этого процесса является то, что фотон, возникающий при вынужденном испускании, идентичен вызвавшему его появление внешнему фотону по частоте, фазе, направлению и поляризации. Это определяет уникальные свойства квантовых генераторов: высокая когерентность излучения в пространстве и во времени, высокая монохроматичность, узкая направленность пучка излучения, огромная концентрация потока мощности и способность фокусироваться в очень малые объемы. Лазеры создаются на базе различных активных сред: газообразной, жидкой или твердой. Они могут давать излучение в весьма широком диапазоне длин волн - от 100 нм (ультрафиолетовый свет) до 1.2 мкм (инфракрасное излучение) - и могут работать как в непрерывном, так и в импульсном режимах.

Лазер состоит из трех принципиально важных узлов: излучателя, системы накачки и источника питания, работа которых обеспечивается с помощью специальных вспомогательных устройств.

Излучатель предназначен для преобразования энергии накачки (перевода гелий-неоновой смеси 3 в активное состояние) в лазерное излучение и содержит оптический резонатор, представляющий собой в общем случае систему тщательно изготовленных отражающих, преломляющих и фокусирующих элементов, во внутреннем пространстве которого возбуждается и поддерживается определенный тип электромагнитных колебаний оптического диапазона. Оптический резонатор должен иметь минимальные потери в рабочей части спектра, высокую точность изготовления узлов и их взаимной установки.

Создание лазеров оказалось возможным в результате реализации трех фундаментальных физических идей: вынужденного излучения, создания термодинамически неравновесной инверсной населенности энергетических уровней атомов и использования положительной обратной связи.

Возбужденные молекулы (атомы) способны излучать фотоны люминесценции. Такое излучение является спонтанным процессом. Оно случайно и хаотично по времени, частоте (могут быть переходы между разными уровнями), по направлению распространения и поляризации. Другое излучение - вынужденное, или индуцированное - возникает при взаимодействии фотона с возбужденной молекулой, если энергия фотона равна разности соответствующих уровней энергии. При вынужденном (индуцированном) излучении число переходов, совершаемых в секунду, зависит от числа фотонов, попадающих в вещество за это же время, т. е. от интенсивности света, а также от числа возбужденных молекул. Другими словами, число вынужденных переходов будет тем больше, чем выше населенность соответствующих возбужденных энергетических состояний.

Индуцированное излучение тождественно падающему во всех отношениях, в том числе и по фазе, поэтому можно говорить о когерентном усилении электромагнитной волны, что используется в качестве первой основополагающей идеи в принципах лазерной генерации.

Вторая идея, реализуемая при создании лазеров, заключается в создании термодинамически неравновесных систем, в которых вопреки закону Больцмана, на более высоком уровне находится больше частиц, чем на более низком. Состояние среды, в котором хотя бы для двух энергетических уровней оказывается, что число частиц с большей энергией превосходит число частиц с меньше энергией, называется состоянием с инверсной населенностью уровней, а среда - активной. Именно активная среда, в которой фотоны взаимодействуют с возбужденными атомами, вызывая их вынужденные переходы на более низкий уровень с испускание квантов индуцированного (вынужденного) излучения, является рабочим веществом лазера. Состояние с инверсной населенностью, уровней формально получается из распределения Больцмана для Т < О К, поэтому иногда называется состоянием с "отрицательной" температурой. По мере распространения света в активной среде интенсивность его возрастает, имеет место явление, обратное поглощению, т. е. усиление света. Это означает, что в законе Бугера kX < 0, поэтому инверсная населенность соответствует среде с отрицательным показателем поглощения.

Состояние с инверсной населенностью можно создать, отбирая частицы с меньшей энергией или специально возбуждая частицы, например, светом или электрическим разрядом. Само по себе состояние с отрицательной температурой долго не существует.

Третья идея, используемая в принципах лазерной генерации, возникла в радиофизике и заключается в использовании положительной обратной связи. При ее осуществлении часть генерируемого вынужденного излучения остается внутри рабочего вещества и вызывает вынужденное излучение все новыми и новыми возбужденными атомами. Для реализации такого процесса активную среду помещают в оптический резонатор, состоящий обычно из двух зеркал, подобранных так, чтобы возникающее в нем излучение многократно проходило через активную среду, превращая ее в генератор когерентного вынужденного излучения.

Первый такой генератор в диапазоне СВЧ (мазер) был сконструирован в 1955 г. независимо советскими учеными Н.Г. Басоным и А.М. Прохоровым и американскими - Ч. Таунсом и др. Так как работа этого прибора была основана на вынужденном излучении молекул аммиака, то генератор был назван молекулярным.

В 1960 г. был создан первый квантовый генератор видимого диапазона излучения - лазер с кристаллом рубина в качестве рабочего вещества (активной среды). В том же году был создан газовый гелий-неоновый лазер. Все огромное многообразие созданных в настоящее время лазеров можно классифицировать по видам рабочего вещества: различают газовые, жидкостные, полупроводниковые и твердотельные лазеры. В зависимости от типа лазера энергия для создания инверсной населенности сообщается разными способами: возбуждение очень интенсивным светом - "оптическая накачка", электрическим газовым разрядом, в полупроводниковых лазерах - электрическим током. По характеру свечения лазеры подразделяют на импульсные и непрерывные.

Рассмотрим принцип работы твердотельного рубинового лазера. Рубин - это кристалл окиси алюминия Аl 2 0 3 , содержащий в виде примеси примерно 0,05 % ионов хрома Сг 3 + . Возбуждение ионов хрома осуществляют методом оптической накачки с помощью импульсных источников света большой мощности. В одной из конструкций применяют трубчатый отражатель, имеющий в сечении форму эллипса. Внутри отражателя помещены прямая ксеноновая импульсная лампа и рубиновый стержень, расположенные вдоль линий, проходящих через фокусы эллипса (рис. 1). Внутренняя поверхность алюминиевого отражателя хорошо отполирована или посеребрена. Основное свойство эллиптического отражателя заключается в том, что свет, вышедший из одного его фокуса (ксеноновой лампы) и отраженный от стенок, попадает в другой фокус отражателя (рубиновый стержень).

Рубиновый лазер работает по трехуровневой схеме (рис. 2 а). В результате оптической накачки ионы хрома переходят с основного уровня 1 в короткоживущее возбужденное состояние З. Затем происходит безизлучательный переход в долгоживущее (метастабильное) состояние 2, с которого вероятность спонтанного излучательного перехода относительно мала. Поэтому происходит накопление возбужденных ионов в состоянии 2 и создается инверсная населенность между уровнями 1 и 2. В обычных условиях переход со 2-го на 1-й уровень происходит спонтанно и сопровождается люминесценцией с длиной волны 694,3 нм. В резонаторе лазера есть два зеркала (см. рис. 1), одно из которых имеет коэффициент отражения R интенсивности отраженного и падающего на зеркало света), другое зеркало полупрозрачное и пропускает часть падающего на него излучения {R < 100 %). Кванты люминесценции в зависимости от направления их движения либо вылетают из боковой поверхности рубинового стержня и теряются, либо, многократно отражаясь от зеркал, сами вызывают вынужденные переходы. Таким образом, пучок, перпендикулярный зеркалам, будет иметь наибольшее развитие и выходит наружу через полупрозрачное зеркало. Такой лазер работает в импульсном режиме. лазер пробой медицинское биологическое

Наряду с рубиновым лазером, работающим по трехуровневой схеме, широкое распространение получили четырехуровневые схемы лазеров на ионах редкоземельных элементов (неодим, самарий и др.), внедренных в кристаллическую или стеклянную матрицы (рис. 24, б). В таких случаях инверсная населенность создается между двумя возбужденными уровнями: долгоживущий уровнем 2 и короткоживущим уровнем 2".

Очень распространенным газовым лазером является гелий-неоновый, возбуждение в котором возникает при электрическом разряде. Активной средой в нем служит смесь гелия и неона в соотношении 10:1 и давлении около 150 Па. Излучающими являются атомы неона, атомы гелия играют вспомогательную роль. На рис. 24, в показаны энергетические уровни атомов гелия и неона. Генерация происходит при переходе между 3 и 2 уровнями неона. Для того чтобы создать между ними инверсную населенность, необходимо заселить уровень 3 и опустошить уровень 2. Заселение уровня 3 происходит с помощью атомов гелия. При электрическом разряде электронным ударом происходит возбуждение атомов гелия в долгоживущее состояние (со временем жизни около 10 3 с). Энергия этого состояния очень близка к энергии уровня 3 неона, поэтому при соударении возбужденного атома гелия с невозбужденным атомом неона происходит передача энергии, в результате чего заселяется уровень 3 неона. Для чистого неона время жизни на этом уровне мало и атомы переходят на уровни 1 или 2, реализуется больцмановское распределение. Опустошение уровня 2 неона происходит в основном за счет спонтанного перехода его атомов в основное состояние при соударениях со стенками разрядной трубки. Так обеспечивается стационарная инверсная населенность уровней 2 и 3 неона.

Основным конструктивным элементом гелий-неонового лазер (рис. 3) является газоразрядная трубка диаметром около 7 мм. В трубку вмонтированы электроды для создания газового разряда и возбуждения гелия. На концах трубки под углом Брюстера расположены окна, благодаря которым излучение оказывается плоскополяризованным. Плоскопараллельные зеркала резонатора монтируются вне трубки, одно из них полупрозрачное (коэффициент отражения R < 100 %). Таким образом, пучок вынужденного излучения выходит наружу через полупрозрачное зеркало. Это лазер непрерывного действия.

Зеркала резонатора делают с многослойными покрытиями, и вследствие интерференции создается необходимый коэффициент отражения для заданной длины волны. Чаще всего используются гелий-неоновые лазеры, излучающие красный свет с длиной волны 632,8 нм. Мощность таких лазеров небольшая, она не превышает 100 мВт.

Применение лазеров основано на свойствах их излучения: высокая монохроматичность (~ 0,01 нм), достаточно большая мощность, узость пучка и когерентность.

Узость светового пучка и малая его расходимость позволили использовать лазеры для измерения расстояния между Землей и Луной (получаемая точность - около десятков сантиметров), скорости вращения Венеры и Меркурия и др.

На когерентности лазерного излучения основано их применение в голографии. На основе гелий-неонового лазера с использованием волоконной оптики разработаны гастроскопы, которые позволяют голографически формировать объемное изображение внутренней полости желудка.

Монохроматичность лазерного излучения очень удобна при возбуждении спектров комбинационного рассеяния света атомами и молекулами.

Широкое применение лазеры нашли в хирургии, стоматологии, офтальмологии, дерматологии, онкологии. Биологические эффекты лазерного излучения зависят как от свойств биологического материала, так и от свойств лазерного излучения.

Все лазеры, используемые в медицине, условно подразделяются на 2 вида: низкоинтенсивные (интенсивность не превышает 10 Вт/см 2 , чаще всего составляет около 0,1 Вт/см 2) - терапевтические и высокоинтенсивные - хирургические. Интенсивность наиболее мощных лазеров может достигать 10 14 Вт/см 2 , в медицине обычно используются лазеры с интенсивностью 10 2 - 10 6 Вт/см 2 .

Низкоинтенсивные лазеры - это такие, которые не вызывают заметного деструктивного действия на ткани непосредственно во время облучения. В видимой и ультрафиолетовой областях спектра их эффекты обусловлены фотохимическими реакциями и не отличаются от эффектов, вызываемых монохроматическим светом, полученным от обычных, некогерентных источников. В этих случаях лазеры являются просто удобными монохроматическими источниками света, обеспечивающими точную локализацию и дозированность воздействия. Примерами может служить использование света гелий-неоновых лазеров для лечения трофических язв, ишемической болезни сердца и др., а также криптоновых и др. лазеров для фотохимического повреждения опухолей в фотодинамической терапии.

Качественно новые явления наблюдаются при использовании видимого или ультрафиолетового излучения высокоинтенсивных лазеров. В лабораторных фотохимических экспериментах с обычными источниками света, а также в природе при действии солнечного света обычно осуществляется однофотонное поглощение. Об этом говорится во втором законе фотохимии, сформулированном Штарком и Эйнштейном: каждая молекула, участвующая в химической реакции, идущей под действием света, поглощает один квант излучения, который вызывает реакцию. Однофотонность поглощения, описываемая вторым законом, выполняется потому, что при обычных интенсивностях света практически невозможно одновременное попадание в молекулу, находящуюся в основном состоянии, двух фотонов. Если бы такое событие осуществилось, то выражение приобрело бы вид:

2hv = E t - E k ,

что означало бы суммирование энергии двух фотонов для перехода молекулы из энергетического состояния E k в состояние с энергией Е г. Не происходит также поглощения фотонов электронно-возбужденными молекулами, так как их время жизни мало, а обычно используемые интенсивности облучения невелики. Поэтому концентрация электронно-возбужденных молекул низка, и поглощение ими еще одного фотона чрезвычайно маловероятно.

Однако если увеличить интенсивность света, то становится возможным двухфотонное поглощение. Например, облучение растворов ДНК высокоинтенсивным импульсным лазерным излучением с длиной волны около 266 нм приводило к ионизации молекул ДНК, подобной вызываемой у-излучением. Воздействие ультрафиолета с низкой интенсивностью ионизации не вызывало. Установлено, что при облучении водных растворов нуклеиновых кислот или их оснований пикосекундными (длительность импульса 30 пс) или наносекундными (10 нс) импульсами с интенсивностями выше 10 6 Вт/см 2 приводило к электронным переходам, завершавшимся ионизацией молекул. При пикосекундных импульсах (рис. 4, а) заселение высоких электронных уровней происходило по схеме (S 0 -> S1 -> S n), а при hv hv наносекундных (рис. 4, б) - по схеме (S 0 -> S1 -> Т г -> Т п). В обоих случаях молекулы получали энергию, превышающую энергию ионизации.

Полоса поглощения ДНК располагается в ультрафиолетовой области спектра при < 315 нм, видимый свет нуклеиновые кислоты совсем не поглощают. Однако воздействие высокоинтенсивным лазерным излучением около 532 нм переводит ДНК в электронно-возбужденное состояние за счет суммирования энергии двух фотонов (рис. 5).

Поглощение любого излучения приводит к выделению некоторого количества энергии в виде тепла, которое рассеивается от возбужденных молекул в окружающее пространство. Инфракрасное излучение поглощается главным образом водой и вызывает в основном тепловые эффекты. Поэтому излучение высокоинтенсивных инфракрасных лазеров вызывает заметное немедленное тепловое действие на ткани. Под тепловым воздействием лазерного излучения в медицине понимают в основном испарение (резание) и коагуляцию биотканей. Это касается различных лазеров с интенсивностью от 1 до 10 7 Вт/см 2 и с продолжительностью облучения от миллисекунд до нескольких секунд. К ним относятся, например, газовый С 0 2 -лазер (с длиной волны 10,6 мкм), Nd:YAG-лазep (1,064 мкм) и другие. Nd:YAG-лазep - наиболее широко используемый твердотельный четырехуровневый лазер. Генерация осуществляется на переходах ионов неодима (Nd 3+), введенных в кристаллыY 3 Al 5 0 12 иттрий-алюминиевого граната (YAG).

Наряду с нагревом ткани происходит отвод части тепла за счет теплопроводности и тока крови. При температурах ниже 40 °С не обратимые повреждение не наблюдаются. При температуре 60 °С начинается денатурация белков, коагуляция тканей и некроз. При 100-150 °С вызывается обезвоживание и обугливание, а при температурах свыше 300 °С ткань испаряется.

Когда излучение исходит от высокоинтенсивного сфокусированного лазера, количество выделяющегося тепла велико, в ткани возникает температурный градиент. В месте падения луча ткань испаряется, в прилегающих областях происходит обугливание и коагуляция (рис. 6). Фотоиспарение является способом послойного удаления или разрезания ткани. В результате коагуляции завариваются сосуды и останавливается кровотечение. Так сфокусированным лучом непрерывного С 0 2 -лазера () с мощностью около 2 * 10 3 Вт/см 2 пользуются как хирургическим скальпелем для разрезания биологических тканей.

Если уменьшать длительность воздействия (10-10 с) и увеличивать интенсивность (выше 10 6 Вт/см 2), то размеры зон обугливания и коагуляции становятся пренебрежимо малыми. Такой процесс называют фотоабляцией (фотоудалением) и используют для послойного удаления ткани. Фотоабляция возникает при плотностях энергии 0,01-100 Дж/см 2 .

При дальнейшем повышении интенсивности (10 Вт/см и выше) возможен еще один процесс - "оптический пробой". Это явление заключается в том, что из-за очень высокой напряженности электрического поля лазерного излучения (сравнимой с напряженностью внутриатомных электрических полей) материя ионизации, образуется плазма и генерируются механические ударные волны. Для оптического пробоя не требуется поглощения квантов света веществом в обычном смысле, он наблюдается прозрачных средах, например, в воздухе.

2. Применение высокоинтенсивного лазерного излучения в хирургии (общие принципы)

Основной метод лечения хирургических болезней - операции, связанные с рассечением биотканей. Воздействие сильносконцентрированной световой энергии на биоткань приводит к ее сильному нагреву с последующим испарением межтканевой и внутриклеточной жидкости, уплотнению и коагуляции тканевых структур. При малых экспозициях разрушению подвергаются поверхностные слои биоткани. С ростом экспозиции увеличиваются глубина и объем деструкции.

Хирургические лазеры бывают как непрерывные, так и импульсные, в зависимости от типа активной среды. Условно их можно разделить на три группы по уровню мощности:

коагулирующие: 1-5 Вт;

испаряющие и неглубоко режущие: 5-20 Вт;

глубоко режущие: 20-100 Вт.

Конечно, это деление в значительной степени условно, так как длина волны излучения и режим работы очень сильно влияют на требования по выходной мощности хирургического лазера

При использовании лазерного излучения большой мощности происходит очень быстрое повышение температуры ткани в месте контакта лазерного луча с биотканью. Это приводит к эффекту обратимой денатурации белка (40-53 °С), дальнейшее повышение температур (55-63 °С) к необратимой деструкции белковых структур. Повышение температуры от 63 до 100 °С приводит к коагуляции, а от 100 °С и более к испарению и карбонизации биоткани.

Операция, проводимая бесконтактным методом, обеспечивает ярко выраженное гемостатическое действие. Воздействие осуществляется практически бескровно или с минимальной кровопотерей, что упрощает ее выполнение и сопровождается незначительной травматизацией окружающих тканей.

Глубина проникновения излучения лазера в ткани зависит от времени воздействия и степени гидратации ткани. Чем выше гидрофильность, тем глубина проникновения меньше, и наоборот, чем меньше степень гидратации ткани, тем глубже проникает излучение. При импульсном лазерном излучение биоткань не прогревается на необходимую глубину в результате значительного поверхностного поглощения, и поэтому испарения не происходит, а имеет место только коагуляция. При длительном воздействии после обугливания изменяются параметры поглощения ткани и начинается испарение.

В лазерной хирургии используется высокоинтенсивное лазерное излучение (ВИЛИ), которое получают с помощью С0 2 , EnYAG-лазера и аргонового лазера.

Лазерные хирургические инструменты обладают высокой точностью и аккуратностью производимого деструктивного действия на оперируемые органы и ткани. Это актуально и подчас является всегда недостающим звеном в ключевых этапах операций, особенно операций, производимых на тканях и органах с интенсивным кровоснабжением, для того чтобы вызывать коагуляцию фронта деструкции и избегать кровоизлияния. Также применение лазерного скальпеля обеспечивает абсолютную стерильность операции. Здесь можно привести медицинские комплексы "Скальпель-1", "Калина", "Разбор", "Ланцет-1" - модели СО, лазера, предназначенные для проведения хирургических операций в различных областях медицинской практики. Лазерные хирургические аппараты являются универсальным режущим средством и могут быть использованы на ключевых этапах хирургических вмешательств. Показаниями к применению лазерного излучения во время операции служат: необходимость проведения операций на обильно кровоснабжаемых органах, когда требуется полный гемостаз, а его выполнение обычными способами сопровождается большой кровопотерей; необходимость стерилизации гнойных ран и профилактики возможного микробного загрязнения чистых операционных ран (это обстоятельство чрезвычайно важно в регионах с тропическим климатом); необходимость прецизионной техники оперативных вмешательств; оперативные вмешательства у больных с нарушением свертывания крови.

Универсальных режимов лазерного воздействия на различные ткани не существует. Поэтому подбор оптимальных параметров и режимов воздействия осуществляется хирургом самостоятельно на основе базовых методик применения лазерных хирургических установок в медицинской практике. Для хирургической обработки указанные методики разработаны сотрудниками Российского государственного научного центра лазерной медицины и ММА им. И.М. Сеченова, Тверской медицинской академии на основе обобщения клинического опыта в различных областях медицины: в хирургической стоматологии и челюстно-лицевой хирургии, абдоминальной хирургии, хирургии легких и плевры, пластической хирургии, косметологии, гнойной хирургии, ожоговой хирургии, хирургии аноректальной области, гинекологии, урологии, отоларингологии.

Характер взаимодействия лазерного излучения с биологической тканью зависит от плотности мощности лазерного излучения и от времени взаимодействия. Скорость разреза тканей лазерным лучом на разных этапах операции подбирается хирургом опытным путем в зависимости от вида ткани и желаемого качества разреза при выбранных параметрах лазерного излучения. Замедление скорости разреза может привести к увеличению карбонизации тканей и образованию глубокой зоны коагуляции. В суперимпульсном режиме и особенно в импульсно-периодическом режиме карбонизация и некроз, связанные с перегревом окружающих тканей, практически исключены при любой скорости движения лазерного луча. Приведем основные характеристики используемых в медицинской практике аппаратов. Длина волны излучения - 10,6 мкм. Выходная мощность излучения (регулируемая) - 0,1-50 Вт. Мощность в режиме "медимпульс" - 50 Вт. Плотность мощности лазерного облучения сверху ограничена условно величиной 50-150 Вт/см 2 для импульсных лазеров и величиной 10 Вт/см 2 для лазеров непрерывного действия. Диаметр лазерного луча на ткани (переключаемый) - 200; 300; 500 мкм. Наведение основного излучения лучом диодного лазера - 2 мВт, 635 нм. Режимы излучения (переключаемые) - непрерывный, импульсно-периодический, медимпульс. Время экспозиции излучения (регулируемое) - 0,1-25 мин. Длительность импульса излучения в импульсно-периодическом режиме (регулируемая) - 0,05-1,0 с. Длительность паузы между импульсами - 0,05-1,0 с. Пульт управления выносной. Включение и выключение излучения - ножная педаль. Удаление продуктов сгорания - система эвакуации дыма. Радиус операционного пространства - до 1200 мм. Система охлаждения - автономная, воздушно-жидкостного типа. Размещение в операционной напольное или настольное. Электропитание (переменный ток) - 220 В, 50 Гц, 600 Вт. Габаритные размеры, масса варьируют. Как можно заметить, основным отличием лазера для хирургии от остальных медицинских лазеров является высокая мощность излучения, особенно в импульсе. Это необходимо, чтобы за время действия импульса тканевое вещество успело поглотить излучение, разогреться и испариться в окружающее воздушное пространство. В основном все хирургические лазеры работают в средней инфракрасной области оптического диапазона.

Для проведения операций в мобильном варианте подходит JIM-10 - лазерный хирургический аппарат "Лазермед" - последнее достижение в области лазерной техники. Построенный на основе полупроводниковых лазеров, излучающих на длине волны 1,06 мкм, аппарат отличается высокой надежностью, малыми габаритными размерами и весом. Выходная мощность излучения - 0-7(10) Вт, габариты в упакованном состоянии 470 х 350 х 120 мм, масса не более 8 кг. Этот аппарат выполнен в виде чемодана, который в случае необходимости можно трансформировать в рабочее положение.

Также среди продукции других отечественных фирм-производителей можно указать следующие хирургические комплексы: АЛОД-ОБАЛКОМ "Хирург" (хирургический лазерный аппарат ближнего ИК-диапазона с регулируемой мощностью излучения). Предлагается 5 модификаций, отличающихся максимальной мощностью лазерного излучения, - 6 Вт, 9 Вт, 12 Вт, 15 Вт, 30 Вт. Используются для ПТ-терапии (коагуляции, удаления новообразований, разрезания тканей), установки на основе углекислотного, YAG-неодимового (общая хирургия) и аргонового (офтальмология) лазера компании, а также многие другие на основе как газовых, так и твердотельных и полупроводниковых активных сред.

Существуют многие зарубежные и отечественные аналоги, принципы использования которых аналогичны вышеизложенным.

3. Световой пробой

Световой пробой (оптический пробой, оптический разряд, лазерная искра), переход вещества в результате интенсивной ионизации в состояние плазмы под действием электромагнитных полей оптических частот. Впервые световой пробой наблюдался в 1963 при фокусировке в воздухе излучения мощного импульсного лазера на кристалле рубина, работающего в режиме модулированной добротности. При световом пробое в фокусе линзы возникает искра, эффект воспринимается наблюдателем как яркая вспышка, сопровождаемая сильным звуком. Для пробоя газов на оптических частотах требуются огромные электрические поля порядка 106-107 В/см, что соответствует интенсивности светового потока в луче лазера =109-1011 Вт/см 2 (для сравнения, СВЧ-пробой атм. воздуха происходит при напряжённости поля =104 В/см). Возможны два механизма Световой пробой газа под действием интенсивного светового излучения. Первый из них не отличается по своей природе от пробоя газов в полях не очень больших частот (сюда относится и СВЧ-диапазон). Первые затравочные электроны, появившиеся по тем или иным причинам в поле, сначала набирают энергию, поглощая фотоны при столкновениях с атомами газа. Этот процесс является обратным по отношению к тормозному испусканию квантов при рассеянии эл-нов нейтр. возбуждёнными атомами. Накопив энергию, достаточную для ионизации, эл-н ионизует атом, и вместо одного появляются два медленных эл-на, процесс повторяется. Так развивается лавина (см. ЛАВИННЫЙ РАЗРЯД). В сильных полях такой процесс осуществляется достаточно быстро и в газе вспыхивает пробой. Второй механизм возникновения Световой пробой, характерный именно для оптических частот, имеет чисто квантовую природу. Электроны могут отрываться от атомов в результате многоквантового фотоэффекта, т. е. при одновременном поглощении сразу нескольких фотонов. Одноквантовый фотоэффект в случае частот видимого диапазона невозможен, т. к. потенциалы ионизации атомов в несколько раз превышают энергию кванта. Так, напр., энергия фотона рубинового лазера равна 1,78 эВ, а ионизационный потенциал аргона равен 15,8 эВ, т. е. для отрыва электрона требуется 9 фотонов. Обычно многофотонные процессы маловероятны, но скорость их резко повышается при увеличении плотности числа фотонов, а при тех высоких интенсивностях, при которых наблюдают Световой пробой, вероятность их достигает значительной величины. В плотных газах, при давлениях порядка атмосферного и выше, всегда происходит лавинная ионизация, многофотонные процессы является здесь лишь причиной появления первых эл-нов. В разреженных же газах и в полях пикосекундных импульсов, когда электроны вылетают из области действия поля, не успев испытать много столкновений, лавина не развивается и Световой пробой возможен только за счёт непосредственного вырывания эл-нов из атомов под действием света. Это возможно только при очень сильных световых полях >107 В/см. При высоких давлениях Световой пробой наблюдается в гораздо более слабых полях. Весь механизм Световой пробой сложен и многообразен.

Основные световые величины

Световой пробой наблюдается и в конденсированных средах при распространении в них мощного лазерного излучения и может явиться причиной разрушения материалов и оптических деталей лазерных устройств.

Использование полупроводникового лазера открывает новые возможности в качестве и сроках проводимого лечения. Этот высокотехнологический хирургический инструмент и аппарат может применяться для профилактики и ведения раны в постоперационном периоде. Это становится возможным за счет использования физиотерапевтических свойств лазерного излучения инфракрасного спектра, обладающего выраженным противовоспалительным эффектом, бактериостатическим и бактерицидным действием, и оказывающего стимулирующее влияние на тканевой иммунитет и процессы регенерации. Отдельно стоит упомянуть о возможности использования диодного лазера для отбеливания зубов на 3-4 тона за одно посещение. Тем не менее, наиболее частыми областями применения лазера являются хирургия и пародонтология.

Результаты, полученные при работе с лазером, дают основания утверждать: диодный лазер - это практически незаменимый помощник врача в каждодневной работе, что подтверждается и положительными отзывами пациентов. По их мнению применение данного вида лечения является обоснованным и комфортным. Операция проходит бескровно, быстро, послеоперационный этап переносится легче.

Объективно наблюдаются уменьшение сроков заживления в 2 раза, меньшие болевые ощущения во время и после операций, позволяющие обходиться без анестетиков, более быстрое течение регенерации, отсутствие отеков - неудивительно, что все большее количество пациентов предпочитают проведение манипуляции лазером. Но это еще не все - разработанная методика ведения пациентов с заболеванием пародонта позволяет уменьшить количество и отсрочить проведение лоскутных операций. Также получены обнадеживающие результаты в эндодонтии - очень перспективным представляется проведение обработки каналов лазерным светом.

Области применения . Диодные лазеры отлично препарируют, обеззараживают, коагулируют и реконструируют мягкие ткани, благодаря чему с их помощью можно успешно выполнять следующие манипуляции:

* Коррекция десны при предпротезной подготовке облегчает работу с материалами. Бескровное поле дает непосредственный доступ к поверхностям, закрытым слизистой оболочкой.

* Пластика уздечек - устраняются короткие уздечки языка и верхней губы, пластика преддверия полости рта. В большинстве случаев успешно проводится полное удаление уздечки. В процессе заживления наблюдается минимальное образование отека - значительно меньше, чем раны от вмешательства скальпелем.

* Обработка пародонтальных карманов при гингивите и начальном пародонтите. После проведения курса облучения достигается быстрый и хороший результат. Также замечено, что твердые зубные отложения после воздействия лазерного излучения легче удаляются.

* Гингивопластика. Гингивальная гиперплазия, возникающая в результате ортодонтического лечения, механического раздражения встречается все чаще. Известно, что стимуляция слизистых тканей приводит к патологическому покрытию зуба. Реакция ткани постоянна, обычно требуется удаление лишней ткани. Лазерная хирургия представляет эффективный метод удаления лишней ткани, восстанавливающий нормальный внешний вид слизистой.

* Лечение афтозных язв и гиперестезий герпеса. Используются физиотерапевтические возможности диодного лазера. Энергия лазера в виде несфокусированного пучка, направленная на поверхность данных повреждений, воздействует на нервные окончания (при гиперестезиях). Более трудные случаи требуют наличия легкого поверхностного контакта.

* Косметическая реконструкция слизистой. Эта манипуляция является совершенным эстетическим методом лечения. Лазеры дают возможность удалять ткань послойно. Отсутствие кровотечения позволяет проводить данные операции с большей точностью. Десневые ткани легко выпариваются, оставляя четкие края. Параметры ширины, длины разрезов и высоты гингивальных контуров легко достижимы.

* Пародонтологическое лечение. В данной ситуации наиболее успешным является комплексный подход, сочетающий хирургию и физиотерапию. Имеются программы лечения, приводящие к длительной ремиссии при соблюдении пациентом рекомендаций по гигиене полости рта. При первом посещении производится купирование острого процесса, затем производится санация патологических карманов, при необходимости выполняются хирургические манипуляции с использованием дополнительных костных материалов. Далее пациент проходит поддерживающий курс лазерной терапии. Период лечения занимает в среднем 14 дней.

* Эндодонтическое лечение. Традиционное применение лазера в эндодонтии - это выпаривание остатков пульпы и обеззараживание каналов. Специальные эндодонтические насадки позволяют работать непосредственно в открытом канале до апекса. С помощью лазера происходит аблация остатков тканей, уничтожение бактерий и остекление стенок каналов. При наличии фистулы лазерный луч проходит через канал фистулы в сторону очага воспаления. При этом на некоторое время приостанавливается распространение инфекции и подавляются симптомы, однако рецидив очевиден, если корневой канал не будет полноценно обработан.

* Отбеливание. Не стоит отмахиваться от того факта, что это одна из самых востребованных среди пациентов эстетических процедур. С помощью диодного лазера существенного отбеливающего эффекта удается достичь уже за одно посещение. Сама процедура предельно проста и заключается в активации лазерным излучением предварительно нанесенного отбеливающего геля.

Преимущества. В хирургической стоматологии и пародонтологии преимущества лазера определяются такими факторами, как точность и простота доступа к операционному полю. При этом во время операции отсутствует кровотечение, что позволяет операционному полю оставаться сухим, а это естественным образом обеспечивает лучший обзор - в результате уменьшается время проведения операции. Дополнительно стоит отметить, что во время операции сосуды коагулируются, тем самым происходит минимизация послеоперационного отека.

Также за счет противовоспалительного и бактериостатического действия лазерного излучения уменьшается риск возникновения осложнений. Заживление ран происходит быстрее по сравнению с использованием традиционных методик.

При лазерном консервативном лечении гингивита и пародонтита с глубиной карманов до 5 мм отмечается отсутствие кровоточивости и воспалительных явлений, в ряде случаев наблюдается регенерация костной ткани, что подтверждается рентгенологическими исследованиями.

При проведении отбеливания помимо небольшого времени процедуры (около 1 часа) значительным преимуществом является минимальное проявление гиперчувствительности после процедуры отбеливания.

Отечественные разработки. Как видите, преимуществ использования диодных лазеров немало. Есть правда и один серьезный недостаток, присущий всем инновационным разработкам во всех областях человеческого знания - высокая цена. Действительно, стоимость таких аппаратов, особенно производства известных западных брендов, значительна. К счастью, в этой области есть и российские разработки, причем это тот достаточно редкий случай (когда речь заходит о высокотехнологичных разработках), когда "российское" не означает "худшее". Еще с советских времен отечественные разработки в области лазерных технологий не только не уступают западным аналогам, но зачастую и превосходят их - многие прототипы современных лазерных систем разрабатывались именно в нашей стране.

Существует и отечественный полупроводниковый стоматологический лазер - это аппарат "Лами С" (совместная разработка УМЦ "Дента-Рус" и НПФ "Опттехника"), которым уже заинтересовались некоторые западные компании, т.к. среди всего прочего неоспоримым его достоинством является тот факт, что стоимость лазера в 3 раза ниже, по сравнению с импортными аналогами.

В аппарате используются полупроводниковые лазерные кристаллы, работающие от низковольтных маломощных (350 Вт) источников питания, а не газоразрядные трубки, требующие специального высоковольтного источника питания. Такая конструкция позволяет решить сразу несколько задач - отсутствие высокого напряжения является определенной гарантией безопасности для врача и пациента, нет вредных электромагнитных полей, не требуется и специальное охлаждение.

Но вернемся к невысокой цене прибора - это позволяет значительно быстрее окупить финансовые вложения и начать получать прибыль. Согласитесь, помимо улучшения качества обслуживания пациентов, это также очень немаловажно в условиях коммерческого приема.

Из других особенностей аппаратов "Лами" имеет смысл отметить следующие - они не требуют особых условий и специального обслуживания, малогабаритны и легко транспортируются в пределах клиники, обладают надежностью и стабильностью параметров. Сервисное обслуживание организовано таким образом, что при возникновении неисправностей на время ремонта врач получает другой аппарат.

Заключение

Основными инструментами, которые применяет хирург для диссекции тканей, являются скальпель и ножницы, т. е. режущие инструменты. Однако раны и разрезы, производимые скальпелем и ножницами, сопровождаются кровотечением, требующим применения специальных мер гемостаза. Кроме того, при контакте с тканями режущие инструменты могут распространять микрофлору и клетки злокачественных опухолей вдоль линии разреза. В связи с этим с давних пор хирурги мечтали иметь в своем распоряжении такой инструмент, который производил бы бескровный разрез, одновременно уничтожая патогенную микрофлору и опухолевые клетки в операционной ране. Вмешательства на "сухом операционном поле" являются идеалом для хирургов любого профиля.

Попытки создать "идеальный" скальпель относятся к концу прошлого века, когда был сконструирован так называемый электронож, работающий с использованием токов высокой частоты. Этот прибор в более совершенных вариантах в настоящее время применяют довольно широко хирурги различных специальностей. Однако по мере накопления опыта выявлены отрицательные стороны "электрохирургии", основной из которых является слишком большая зона термического ожога тканей в области проведения разреза. Известно, что чем шире зона ожога, тем хуже заживает хирургическая рана. Кроме того, при использовании электроножа возникает необходимость включения тела больного в электрическую цепь. Электрохирургические аппараты отрицательно влияют на работу электронных приборов и устройств слежения за жизнедеятельностью организма во время операции. Криохирургические аппараты также вызывают значительное повреждение тканей, ухудшающее процесс заживления. Скорость рассечения тканей криоскальпелем очень низка. Фактически при этом происходит не рассечение, а деструкция тканей. Значительную зону ожога наблюдают и при использовании плазменного скальпеля. Если принять во внимание, что луч лазера обладает выраженными гемостатическими свойствами, а также способностью герметизировать бронхиолы, желчевыводящие протоки и протоки поджелудочной железы, то применение лазерной техники в хирургии становится исключительно перспективным. Кратко перечисленные некоторые достоинства применения лазеров в хирургии относятся прежде всего к лазерам на углекислом газе (С 0 2 -лазерам). Кроме них, в медицине применяют лазеры, работающие на других принципах и на других рабочих веществах. Эти лазеры обладают принципиально другими качествами при воздействии на биологические ткани и применяющих по сравнительно узким показаниям, в частности в сердечно-сосудистой хирургии, в онкологии, для лечения хирургических заболеваний кожи и видимых слизистых оболочек и др.

С писок использованной литературы

1. А.Н. Ремизов "Медицинская и биологическая физика".

2. О.К. Скобелкина "Лазеры в хирургии под редакцией профессора".

3. С.Д. Плетнева "Лазеры в клинической медицине" под редакцией".

Размещено на Allbest.ru

...

Подобные документы

    Основные направления и цели медико-биологического использования лазеров. Меры защиты от лазерного излучения. Проникновение лазерного излучения в биологические ткани, их патогенетические механизмы взаимодействия. Механизм лазерной биостимуляции.

    реферат , добавлен 24.01.2011

    Понятие и назначение лазера, принцип действия и структура лазерного луча, характер его взаимодействия с тканью. Особенности практического использования лазера в стоматологии, оценка основных преимуществ и недостатков данного метода лечения зубов.

    реферат , добавлен 14.05.2011

    Общее понятие о квантовой электронике. История развития и принцип устройства лазера, свойства лазерного излучения. Низкоинтенсивные и высокоинтенсивные лазеры: свойства, действие на биологические ткани. Применение лазерных технологий в медицине.

    реферат , добавлен 28.05.2015

    Процесс лазерного излучения. Исследования в области лазеров в диапазоне рентгеновских волн. Медицинское применение CO2–лазеров и лазеров на ионах аргона и криптона. Генерация лазерного излучения. Коэффициент полезного действия лазеров различных типов.

    реферат , добавлен 17.01.2009

    Физические основы применения лазерной техники в медицине. Типы лазеров, принципы действия. Механизм взаимодействия лазерного излучения с биотканями. Перспективные лазерные методы в медицине и биологии. Серийно выпускаемая медицинская лазерная аппаратура.

    реферат , добавлен 30.08.2009

    Понятие лазерного излучения. Механизм действия лазера на ткани. Его применение в хирургии для рассечения тканей, остановки кровотечения, удаления патологий и сваривания биотканей; стоматологии, дерматологии, косметологии, лечении заболеваний сетчатки.

    презентация , добавлен 04.10.2015

    Лазерные методы диагностики. Оптические квантовые генераторы. Основные направления и цели медико-биологического использования лазеров. Ангиография. Диагностические возможности голографии. Термография. Лазерная медицинская установка длялучевой терапии.

    реферат , добавлен 12.02.2005

    Физическая природа и лечебные действия ультразвука. Основные направления его медико-биологического приложения. Опасность и побочные эффекты ультразвукового исследования. Сущность эхокардиографии. Постановка диагноза заболеваний внутренних органов.

    презентация , добавлен 10.02.2016

    Применение ионизирующего излучения в медицине. Технология лечебных процедур. Установки для дистанционной лучевой терапии. Применение изотопов в медицине. Средства защиты от ионизирующего излучения. Процесс получения и использования радионуклидов.

    презентация , добавлен 21.02.2016

    Ознакомление с историей открытия и свойствами лазеров; примеры использования в медицине. Рассмотрение строения глаза и его функций. Заболевания органов зрения и методы их диагностики. Изучение современных методов коррекции зрения с помощью лазеров.

ВВЕДЕНИЕ

1 ЛАЗЕРЫ И ИХ ПРИМЕНЕНИЕ В МЕДИЦИНЕ

2 ОСНОВНЫЕ НАПРАВЛЕНИЯ И ЦЕЛИ МЕДИКО-БИОЛОГИЧЕСКОГО ИСПОЛЬЗОВАНИЯ ЛАЗЕРОВ

3 ФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ ЛАЗЕРОВ В МЕДИЦИНСКОЙ ПРАКТИКЕ

4 МЕРЫ ЗАЩИТЫ ОТ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

5 ПРОНИКНОВЕНИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В БИОЛОГИЧЕСКИЕ ТКАНИ

6 ПАТОГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ ВЗАИМОДЕЙСТВИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ С БИОЛОГИЧЕСКИМИ ТКАНЯМИ

7 МЕХАНИЗМЫ ЛАЗЕРНОЙ БИОСТИМУЛЯЦИИ

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

ВВЕДЕНИЕ

Основными инструментами, которые применяет хирург для диссекции тканей, являются скальпель и ножницы, т. е. режущие инструменты. Однако раны и разрезы, производимые скальпелем и ножницами, сопровождаются кровотечением, требующим применения специальных мер гемостаза. Кроме того, при контакте с тканями режущие инструменты могут распространять микрофлору и клетки злокачественных опухолей вдоль линии разреза. В связи с этим с давних пор хирурги мечтали иметь в своем распоряжении такой инструмент, который производил бы бескровный разрез, одновременно уничтожая патогенную микрофлору и опухолевые клетки в операционной ране. Вмешательства на «сухом операционном поле» являются идеалом для хирургов любого профиля.

Попытки создать «идеальный» скальпель относятся к концу прошлого века, когда был сконструирован так называемый электронож, работающий с использованием токов высокой частоты. Этот прибор в более совершенных вариантах в настоящее время применяют довольно широко хирурги различных специальностей. Однако по мере накопления опыта выявлены отрицательные стороны «электрохирургии», основной из которых является слишком большая зона термического ожога тканей в области проведения разреза. Известно, что чем шире зона ожога, тем хуже заживает хирургическая рана. Кроме того, при использовании электроножа возникает необходимость включения тела больного в электрическую цепь. Электрохирургические аппараты отрицательно влияют на работу электронных приборов и устройств слежения за жизнедеятельностью организма во время операции. Криохирургические аппараты также вызывают значительное повреждение тканей, ухудшающее процесс заживления. Скорость рассечения тканей криоскальпелем очень низка. Фактически при этом происходит не рассечение, а деструкция тканей. Значительную зону ожога наблюдают и при использовании плазменного скальпеля. Если принять во внимание, что луч лазера обладает выраженными гемостатическими свойствами, а также способностью герметизировать бронхиолы, желчевыводящие протоки и протоки поджелудочной железы, то применение лазерной техники в хирургии становится исключительно перспективным. Кратко перечисленные некоторые достоинства применения лазеров в хирургии относятся прежде всего к лазерам на углекислом газе (С0 2 -лазерам). Кроме них, в медицине применяют лазеры, работающие на других принципах и на других рабочих веществах. Эти лазеры обладают принципиально другими качествами при воздействии на биологические ткани и применяющих по сравнительно узким показаниям, в частности в сердечно-сосудистой хирургии, в онкологии, для лечения хирургических заболеваний кожи и видимых слизистых оболочек и др.

1 ЛАЗЕРЫ И ИХ ПРИМЕНЕНИЕ В МЕДИЦИНЕ

Несмотря на общую природу световых и радиоволн, многие годы оптика и радиоэлектроника развивались самостоятельно, независимо друг от друга. Казалось, что источники света - возбужденные частицы и генераторы радиоволн - имеют мало общего. Лишь с середины XX столетия появились работы по созданию молекулярных усилителей и генераторов радиоволн, которые положили начало новой самостоятельной области физики - квантовой электронике.

Квантовая электроника изучает методы усиления и генерации электромагнитных колебаний с использованием вынужденного излучения квантовых систем. Достижения в этой области знаний находят все большее применение в науке и технике. Ознакомимся с некоторыми явлениями, лежащими в основе квантовой электроники и работы оптических квантовых генераторов - лазеров.

Лазеры представляют собой источники света, работающие на базе процесса вынужденного (стимулированного, индуцированного) испускания фотонов возбужденными атомами или молекулами под воздействием фотонов излучения, имеющих ту же частоту. Отличительной чертой этого процесса является то, что фотон, возникающий при вынужденном испускании, идентичен вызвавшему его появление внешнему фотону по частоте, фазе, направлению и поляризации. Это определяет уникальные свойства квантовых генераторов: высокая когерентность излучения в пространстве и во времени, высокая монохроматичность, узкая направленность пучка излучения, огромная концентрация потока мощности и способность фокусироваться в очень малые объемы. Лазеры создаются на базе различных активных сред: газообразной, жидкой или твердой. Они могут давать излучение в весьма широком диапазоне длин волн - от 100 нм (ультрафиолетовый свет) до 1.2 мкм (инфракрасное излучение) - и могут работать как в непрерывном, так и в импульсном режимах.

Лазер состоит из трех принципиально важных узлов: излучателя, системы накачки и источника питания, работа которых обеспечивается с помощью специальных вспомогательных устройств.

Излучатель предназначен для преобразования энергии накачки (перевода гелий-неоновой смеси 3 в активное состояние) в лазерное излучение и содержит оптический резонатор, представляющий собой в общем случае систему тщательно изготовленных отражающих, преломляющих и фокусирующих элементов, во внутреннем пространстве которого возбуждается и поддерживается определенный тип электромагнитных колебаний оптического диапазона. Оптический резонатор должен иметь минимальные потери в рабочей части спектра, высокую точность изготовления узлов и их взаимной установки.

Создание лазеров оказалось возможным в результате реализации трех фундаментальных физических идей: вынужденного излучения, создания термодинамически неравновесной инверсной населенности энергетических уровней атомов и использования положительной обратной связи.

Возбужденные молекулы (атомы) способны излучать фотоны люминесценции. Такое излучение является спонтанным процессом. Оно случайно и хаотично по времени, частоте (могут быть переходы между разными уровнями), по направлению распространения и поляризации. Другое излучение - вынужденное, или индуцированное - возникает при взаимодействии фотона с возбужденной молекулой, если энергия фотона равна разности соответствующих уровней энергии. При вынужденном (индуцированном) излучении число переходов, совершаемых в секунду, зависит от числа фотонов, попадающих в вещество за это же время, т. е. от интенсивности света, а также от числа возбужденных молекул. Другими словами, число вынужденных переходов будет тем больше, чем выше населенность соответствующих возбужденных энергетических состояний.

Индуцированное излучение тождественно падающему во всех отношениях, в том числе и по фазе, поэтому можно говорить о когерентном усилении электромагнитной волны, что используется в качестве первой основополагающей идеи в принципах лазерной генерации.

Вторая идея, реализуемая при создании лазеров, заключается в создании термодинамически неравновесных систем, в которых вопреки закону Больцмана, на более высоком уровне находится больше частиц, чем на более низком. Состояние среды, в котором хотя бы для двух энергетических уровней оказывается, что число частиц с большей энергией превосходит число частиц с меньше энергией, называется состоянием с инверсной населенностью уровней, а среда - активной. Именно активная среда, в которой фотоны взаимодействуют с возбужденными атомами, вызывая их вынужденные переходы на более низкий уровень с испускание квантов индуцированного (вынужденного) излучения, является рабочим веществом лазера. Состояние с инверсной населенностью, уровней формально получается из распределения Больцмана для Т < О К, поэтому иногда называется состоянием с «отрицательной» температурой. По мере распространения света в активной сред интенсивность его возрастает, имеет место явление, обратное поглощению, т. е. усиление света. Это означает, что в законе Бугера kX < 0, поэтому инверсная населенность соответствует среде с отрицательным показателем поглощения.

Состояние с инверсной населенностью можно создать, отбирая частицы с меньшей энергией или специально возбуждая частицы, например, светом или электрическим разрядом. Само по себе состояние с отрицательной температурой долго не существует.

Третья идея, используемая в принципах лазерной генерации, возникла в радиофизике и заключается в использовании положительной обратной связи. При ее осуществлении часть генерируемого вынужденного излучения остается внутри рабочего вещества и вызывает вынужденное излучение все новыми и новыми возбужденными атомами. Для реализации такого процесса активную среду помещают в оптический резонатор, состоящий обычно из двух зеркал, подобранных так, чтобы возникающее в нем излучение многократно проходило через активную среду, превращая ее в генератор когерентного вынужденного излучения.

Первый такой генератор в диапазоне СВЧ (мазер) был сконструирован в 1955 г. независимо советскими учеными Н. Г. Басоиым и А. М. Прохоровым и американскими - Ч. Таунсом и др.. Так как работа этого прибора была основана на вынужденном излучении молекул аммиака, то генератор был назван молекулярным.

В 1960 г. был создан первый квантовый генератор видимого диапазона излучения - лазер с кристаллом рубина в качестве рабочего вещества (активной среды). В том же году был создан газовый гелий-неоновый лазер. Все огромное многообразие созданных в настоящее время лазеров можно классифицировать по видам рабочего вещества: различают газовые, жидкостные, полупроводниковые и твердотельные лазеры. В зависимости от типа лазера энергия для создания инверсной населенности сообщается разными способами: возбуждение очень интенсивным светом - «оптическая накачка», электрическим газовым разрядом, в полупроводниковых лазерах - электрическим током. По характеру свечения лазеры подразделяют на импульсные и непрерывные.

Рассмотрим принцип работы твердотельного рубинового лазера. Рубин - это кристалл окиси алюминия Аl 2 0 3 , содержащий в виде примеси примерно 0,05% ионов хрома Сг 3+ . Возбуждение ионов хрома осуществляют методом оптической накачки с помощью импульсных источников света большой мощности. В одной из конструкций применяют трубчатый отражатель, имеющий в сечении форму эллипса. Внутри отражателя помещены прямая ксеноновая импульсная лампа и рубиновый стержень, расположенные вдоль линий, проходящих через фокусы эллипса (рис. 1). Внутренняя поверхность алюминиевого отражателя хорошо отполирована или посеребрена. Основное свойство эллиптического отражателя заключается в том, что свет, вышедший из одного его фокуса (ксеноновой лампы) и отраженный от стенок, попадает в другой фокус отражателя (рубиновый стержень).

Рубиновый лазер работает по трехуровневой схеме (рис. 2 а). В результате оптической накачки ионы хрома переходят с основного уровня 1 в короткоживущее возбужденное состояние З. Затем происходит безызлучательный переход в долгоживущее (метастабильное) состояние 2, с которого вероятность спонтанного излучательного перехода относительно мала. Поэтому происходит накопление возбужденных ионов в состоянии 2 и создается инверсная населенность между уровнями 1 и 2. В обычных условиях переход со 2-го на 1-й уровень происходит спонтанно и сопровождается люминесценцией с длиной волны 694,3 нм. В резонаторе лазера есть два зеркала (см. рис. 1), одно из которых имеет коэффициент отражения R интенсивности отраженного и падающего на зеркало света), другое зеркало полупрозрачное и пропускает часть падающего на него излучения {R < 100%). Кванты люминесценции в зависимости от направления их движения либо вылетают из боковой поверхности рубинового стержня и теряются, либо, многократно отражаясь от зеркал, сами вызывают вынужденные переходы. Таким образом, пучок, перпендикулярный зеркалам, будет иметь наибольшее развитие и выходит наружу через полупрозрачное зеркало. Такой лазер работает в импульсном режиме.

Наряду с рубиновым лазером, работающим по трехуровневой схеме, широкое распространение получили четырехуровневые схемы лазеров на ионах редкоземельных элементов (неодим, самарий и др.), внедренных в кристаллическую или стеклянную матрицы (рис. 24, б). В таких случаях инверсная населенность создается между двумя возбужденными уровнями: долгоживущий уровнем 2 и короткоживущим уровнем 2".

Очень распространенным газовым лазером является гелий-неоновый, возбуждение в котором возникает при электрическом разряде. Активной средой в нем служит смесь гелия и неона в соотношении 10:1 и давлении около 150 Па. Излучающими являются атомы неона, атомы гелия играют вспомогательную роль. На рис. 24, в показаны энергетические уровни атомов гелия и неона. Генерация происходит при переходе между 3 и 2 уровнями неона. Для того чтобы создать между ними инверсную населенность, необходимо заселить уровень 3 и опустошить уровень 2. Заселение уровня 3 происходит с помощью атомов гелия. При электрическом разряде электронным ударом происходит возбуждение атомов гелия в долгоживущее состояние (со временем жизни около 10 3 с). Энергия этого состояния очень близка к энергии уровня 3 неона, поэтому при соударении возбужденного атома гелия с невозбужденным атомом неона происходит передача энергии, в результате чего заселяется уровень 3 неона. Для чистого неона время жизни на этом уровне мало и атомы переходят на уровни 1 или 2, реализуется больцмановское распределение. Опустошение уровня 2 неона происходит в основном за счет спонтанного перехода его атомов в основное состояние при соударениях со стенками разрядной трубки. Так обеспечивается стационарная инверсная населенность уровней 2 и 3 неона.

Основным конструктивным элементом гелий-неонового лазер - (рис. 3) является газоразрядная трубка диаметром около 7 мм. В трубку вмонтированы электроды для создания газового разряда и возбуждения гелия. На концах трубки под углом Брюстера расположены окна, благодаря которым излучение оказывается плоскополяризованным. Плоскопараллельные зеркала резонатора монтируются вне трубки, одно из них полупрозрачное (коэффициент отражения R < 100%). Таким образом, пучок вынужденного излучения выходит наружу через полупрозрачное зеркало. Это лазер непрерывного действия.

Зеркала резонатора делают с многослойными покрытиями, и вследствие интерференции создается необходимый коэффициент отражения для заданной длины волны. Чаще всего используются гелий-неоновые лазеры, излучающие красный свет с длиной волны 632,8 нм. Мощность таких лазеров небольшая, она не превышает 100 мВт.

Применение лазеров основано на свойствах их излучения: высокая монохроматичность (~ 0,01 нм), достаточно большая мощность, узость пучка и когерентность.

Узость светового пучка и малая его расходимость позволили использовать лазеры для измерения расстояния между Землей и Луной (получаемая точность - около десятков сантиметров), скорости вращения Венеры и Меркурия и др.

На когерентности лазерного излучения основано их применение в голографии. .На основе гелий-неонового лазера с использованием волоконной оптики разработаны гастроскопы, которые позволяют голографически формировать объемное изображение внутренней полости желудка.

Монохроматичность лазерного излучения очень удобна при возбуждении спектров комбинационного рассеяния света атомами и молекулами.

Широкое применение лазеры нашли в хирургии, стоматологии, офтальмологии, дерматологии, онкологии. Биологические эффекты лазерного излучения зависят как от свойств биологического материала, так и от свойств лазерного излучения.

Все лазеры, используемые в медицине, условно подразделяются на 2 вида: низкоинтенсивные (интенсивность не превышает 10 Вт/см 2 , чаще всего составляет около 0,1 Вт/см 2) - терапевтические и высокоинтенсивные - хирургические. Интенсивность наиболее мощных лазеров может достигать 10 14 Вт/см 2 , в медицине обычно используются лазеры с интенсивностью 10 2 - 10 6 Вт/см 2 .

Низкоинтенсивные лазеры - это такие, которые не вызывают заметного деструктивного действия на ткани непосредственно во время облучения. В видимой и ультрафиолетовой областях спектра их эффекты обусловлены фотохимическими реакциями и не отличаются от эффектов, вызываемых монохроматическим светом, полученным от обычных, некогерентных источников. В этих случаях лазеры являются просто удобными монохроматическими источниками света, обеспечивающими точную локализацию и дозированность воздействия. Примерами может служить использование света гелий-неоновых лазеров для лечения трофических язв, ишемической болезни сердца и др., а также криптоновых и др. лазеров для фотохимического повреждения опухолей в фотодинамической терапии.

Качественно новые явления наблюдаются при использовании видимого или ультрафиолетового излучения высокоинтенсивных лазеров. В лабораторных фотохимических экспериментах с обычными источниками света, а также в природе при действии солнечного света обычно осуществляется однофотонное поглощение. Об этом говорится во втором законе фотохимии, сформулированном Штарком и Эйнштейном: каждая молекула, участвующая в химической реакции, идущей под действием света, поглощает один квант излучения, который вызывает реакцию. Однофотонность поглощения, описываемая вторым законом, выполняется потому, что при обычных интенсивностях света практически невозможно одновременное попадание в молекулу, находящуюся в основном состоянии, двух фотонов. Если бы такое событие осуществилось, то выражение приобрело бы вид:

2hv = E t - E k ,

что означало бы суммирование энергии двух фотонов для перехода молекулы из энергетического состояния E k в состояние с энергией Е г. Не происходит также поглощения фотонов электронно-возбужденными молекулами, так как их время жизни мало, а обычно используемые интенсивности облучения невелики. Поэтому концентрация электронно-возбужденных молекул низка, и поглощение ими еще одного фотона чрезвычайно маловероятно.

Однако если увеличить интенсивность света, то становится возможным двухфотонное поглощение. Например, облучение растворов ДНК высокоинтенсивным импульсным лазерным излучением с длиной волны около 266 нм приводило к ионизации молекул ДНК, подобной вызываемой у-излучением. Воздействие ультрафиолета с низкой интенсивностью ионизации не вызывало. Установлено, что при облучении водных растворов нуклеиновых кислот или их оснований пикосекундными (длительность импульса 30 пс) или наносекундными (10 нс) импульсами с интенсивностями выше 10 6 Вт/см 2 приводило к электронным переходам, завершавшимся ионизацией молекул. При пикосекундных импульсах (рис. 4, а) заселение высоких электронных уровней происходило по схеме (S 0 -> S1 -> S n), а при hv hv наносекундных (рис. 4., б) - по схеме (S 0 -> S1 - Т г -> Т п). В обоих случаях молекулы получали энергию, превышающую энергию ионизации.

Полоса поглощения ДНК располагается в ультрафиолетовой области спектра при < 315 нм, видимый свет нуклеиновые кислоты совсем не поглощают. Однако воздействие высокоинтенсивным лазерным излучением около 532 нм переводит ДНК в электронно-возбужденное состояние за счет суммирования энергии двух фотонов (рис. 5).

Поглощение любого излучения приводит к выделению некоторого количества энергии в виде тепла, которое рассеивается от возбужденных молекул в окружающее пространство. Инфракрасное излучение поглощается главным образом водой и вызывает в основном тепловые эффекты. Поэтому излучение высокоинтенсивных инфракрасных лазеров вызывает заметное немедленное тепловое действие на ткани. Под тепловым воздействием лазерного излучения в медицине понимают в основном испарение (резание) и коагуляцию биотканей. Это касается различных лазеров с интенсивностью от 1 до 10 7 Вт/см 2 и с продолжительностью облучения от миллисекунд до нескольких секунд. К ним относятся, например, газовый С0 2 -лазер (с длиной волны 10,6 мкм), Nd:YAG-лазep (1,064 мкм) и другие. Nd:YAG-лазep - наиболее широко исполь-зуемый твердотельный четырехуровневый лазер. Генерация осуществляется на переходах ионов неодима (Nd 3+),введенных в кристаллыY 3 Al 5 0 12 иттрий-алюминиевого граната (YAG).

Наряду с нагревом ткани происходит отвод части тепла за счет теплопроводности и тока крови. При температурах ниже 40 °С не обратимые повреждение не наблюдаются. При температуре 60 °С начинается денатурация белков, коагуляция тканей и некроз. При 100- 150 °С вызывается обезвоживание и обугливание, а при температурах свыше 300 °С ткань испаряется.

Когда излучение исходит от высокоинтенсивного сфокусированного лазера, количество выделяющегося тепла велико, в ткани возникает температурный градиент. В месте падения луча ткань испаряется, в прилегающих областях пронсходит обугливание и коагуляция (рис. 6). Фотоиспарение является способом послойного удаления или разрезания ткани. В результате коагуляции завариваются сосуды и останавливается кровотечение. Так сфокусированным лучом непрерывного С0 2 -лазера () с мощностью около 2 10 3 Вт/см 2 пользуются как хирургическим скальпелем для разрезания биологических тканей.

Если уменьшать длительность воздействия (10 - 10 с) и увеличивать интенсивность (выше 10 6 Вт/см 2), то размеры зон обугливания и коагуляции становятся пренебрежимо малыми. Такой процесс называют фотоабляцией (фотоудалением) и используют для послойного удаления ткани. Фотоабляция возникает при плотностях энергии 0,01-100 Дж/см 2 .

При дальнейшем повышении интенсивности (10 Вт/см и выше) возможен еще один процесс - «оптический пробой». Это явление заключается в том, что из-за очень высокой напряженности электрического поля лазерного излучения (сравнимой с напряженностью внутриатомных электрических полей) материя ионизации, образуется плазма и генерируются механические ударные волны. Для оптического пробоя не требуется поглощения квантов света веществом в обычном смысле, он наблюдается прозрачных средах, например в воздухе.

2 ОСНОВНЫЕ НАПРАВЛЕНИЯ И ЦЕЛИ МЕДИКО-БИОЛОГИЧЕСКОГО ИСПОЛЬЗОВАНИЯ ЛАЗЕРОВ

Современные направления медико-биологического применения лазеров могут быть разделены на две основные группы Первая - использование лазерного излучения в качестве инструмента исследования. В этом случае лазер играет роль уникального светового источника при спектральных исследованиях, лазерной микроскопии, голографии и др. Вторая группа - основные пути использования лазеров в качестве инструмента воздействия на биологические объекты. Можно выделить три типа такого воздействия.

Первый тип - воздействие на ткани патологического очага импульсным или непрерывным лазерным излучением при плотности мощности порядка 10 5 Вт/м 2 , недостаточной для глубокого обезвоживания, испарения тканей и возникновения в них дефекта. Этому типу воздействия соответствует, в частности, применение лазеров в дерматологии и онкологии для облучения патологических тканевых образований, которое приводит к их коагуляции. Второй тип- рассечение тканей, когда под влиянием излучения лазера непрерывного или частотно-периодического (импульсы, следующие с большой частотой) действия часть ткани испаряется и в ней возникает дефект. В этом случае плотность мощности излучения может превосходить используемую при коагуляции на два порядка (10 7 Вт/м 2) и более. Этому типу воздействия соответствует применение лазеров в хирургии. Третий тип - влияние на ткани и органы низкоэнергетического излучения (единицы или десятки ватт на квадратный метр), обычно не вызывающего явных морфологических изменений, но приводящего к определенным биохимическим и физиологическим сдвигам в организме, т. е. воздействие физиотерапевтического типа. К этому типу следует отнести применение гелий-неонового лазера с целью биостимуляции при вяло текущих раневых процессах, трофических язвах и др.

Задача исследований механизма биологического действия лазерной радиации сводится к изучению тех процессов, которые лежат в основе интегральных эффектов, вызываемых облучением: коагуляции тканей, их рассечения, биостимуляционных сдвигов в организме.

3 ФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ ЛАЗЕРОВ В МЕДИЦИНСКОЙ ПРАКТИКЕ

Принцип действия лазеров основан на квантово-механических процессах, протекающих в объеме рабочей среды излучателя, объяснение которым дает квантовая электроника - область физики, исследующая взаимодействие электромагнитного излучения с электронами, входящими в состав атомов и молекул рабочей среды.

Согласно принципам квантовой электроники любая атомная система в процессе своего внутреннего движения находится в состояниях с определенными значениями энергии, называемых квантовыми, т. е. имеет строго определенные (дискретные) значения энергии. Набор этих значений энергии образует энергетический спектр атомной системы.

При отсутствии внешнего возбуждения атомная система стремится к состоянию, в котором ее внутренняя энергия минимальна. При внешнем возбуждении переход атома в состояния с большей энергией сопровождается поглощением порции энергии, равной разности энергий конечного Е т и начального Е„ состояний. Этот процесс записывается в следующем виде:

Em - E n =nV mn, (1)

где V mn - частота перехода из состояния п в состояние m; h - постоянная Планка.

Как правило, средняя продолжительность пребывания (время жизни) атома в возбужденном состоянии мала и возбужденный атом самопроизвольно (спонтанно) переходит в состояние с меньшей энергией, испуская при этом квант света (фотон) с энергией, определяемой по формуле (1). При спонтанных переходах атомы испускают кванты света хаотически, не взаимосвязано. Они разлетаются равномерно во всех направлениях. Процесс спонтанных переходов наблюдается при свечении нагретых тел, например, ламп накаливания и др. Такое излучение немонохроматично.

При взаимодействии возбужденного атома с внешним излучением, частота которого соответствует частоте перехода атома из состояния с большей энергией в состояние с меньшей энергией, существует вероятность (тем большая, чем выше интенсивность внешнего излучения) перевода этим внешним излучением атома в состояние с меньшей энергией. При этом атом излучает квант света, имеющий те же частоту v mn , фазу, направление распространения и поляризацию, что и вынуждающий этот переход квант света внешнего излучения.

Такие переходы называются вынужденными (индуцированными). Именно наличие вынужденного излучения обеспечивает возможность генерирования когерентного излучения в оптических квантовых генераторах-лазерах.

Теперь рассмотрим, что произойдет при распространении света через систему, в которой имеются атомы с энергией Е т и Е n (для определенности примем E m >En). Число атомов с энергией Е га обозначим N m , а число атомов с энергией E n -N„. Числа N m и N„ принято называть населенностью уровней с энергией Е ш и Е п соответственно.

В естественных условиях на более высоком энергетическом уровне частиц меньше, чем на более низком для любого значения температуры. Поэтому для любого нагретого тела а - величина отрицательная и в соответствии с формулой (2) распространение света в веществе сопровождается его ослаблением. Для усиления света необходимо иметь N m >N n . Такое состояние вещества называют состоянием с инверсией населенности. В этом случае распространение света через вещество сопровождается его усилением за счет энергии возбужденных атомов.

Таким образом, для процесса усиления излучения необходимо обеспечить превышение населенности верхнего уровня перехода над нижним.

Для создания инверсии населенности применяют различные способы, заключающиеся в использовании внешнего источника возбуждения.

Атомную систему с инверсией населенности принято называть активной средой. Для получения генерации излучения необходимо решить проблему обратной связи. Активную среду помещают в оптический резонатор, который в наиболее простом случае представляет собой два взаимно параллельных плоских зеркала, ограничивающих с двух противоположных сторон активную среду. При этом одно из зеркал резонатора частично пропускает излучение генерации и через него осуществляется вывод излучения из резонатора, а другое зеркало полностью отражает падающее на него излучение.

Процесс развития генерации в резонаторе представляется в следующем виде. После создания внешним источником возбуждения в рабочей среде инверсии населенности участвовать в развитии процесса генерации будет только то излучение, которое распространяется вдоль оси резонатора. Это излучение, достигнув поверхности полностью отражающего зеркала резонатора и отразившись от него, снова попадает в активную среду и, распространяясь в ней, за счет вынужденных переходов усиливается. Отразившись от частично отражающего зеркала резонатора, часть усиленного излучения возвращается в активную среду и снова усиливается, а часть излучения выходит из резонатора. Далее указанные процессы повторяются многократно, пока существует внешний источник возбуждения атомной системы.

Для того чтобы процесс генерации излучения был устойчивым, необходимо, чтобы усиление излучения в активной среде за двойной проход в резонаторе было равно или больше полных потерь излучения на том же пути. В полные потери входят потери в активной среде и то излучение, которое выводится из резонатора через частично отражающее зеркало.

В современных лазерах угол расхождения (9) лазерного пучка может достигать дифракционного предела и составлять по порядку величин от нескольких угловых секунд до десятков угловых минут.

Мощность лазерного излучения, снимаемая с единицы объема активной среды, в конечном счете определяется мощностью внешнего источника возбуждения, подводимой к единице объема активной среды. Максимальная полная мощность (энергия) лазерного излучения в довольно широких пределах пропорциональна объему активной среды и максимальной мощности (энергии) источника внешнего возбуждения (накачки).

Основными особенностями лазерного излучения, делающими его перспективным для применения в различных областях медицины, являются высокие направленность, монохроматичность и энергоемкость.

Высокая направленность лазерного излучения характеризуется тем, что угловое расхождение его пучка в свободном пространстве достигает величин, измеряемых десятками угловых секунд. Благодаря этому возможна передача лазерного излучения в пучке на значительные расстояния без существенного увеличения его диаметра. Высокие монохроматичность и направленность как импульсного, так и непрерывного лазерного излучения позволяют фокусировать его в пятна, соизмеримые с длиной волны излучения самого лазера. Столь острая фокусировка делает возможным облучение медико-биологических объектов на клеточном уровне. Кроме того, такая фокусировка позволяет получать требуемый лечебный эффект при небольших энергиях лазерного излучения. Последнее особенно важно при использовании лазерного излучения для обработки биообъектов, чувствительных к свету.

2. Угол расхождения лазерного пучка (6).

1 - непрозрачное зеркало, 2 - полупрозрачное зеркало, 3 - лазерный световой пучок.

Использование острой фокусировки при больших мощностях и энергиях облучения позволяет осуществлять испарение и разрез биоткани, что и обусловило применение лазера в хирургии.

Для объектов, малочувствительных к свету (злокачественные опухоли), возможно облучение мощным излучением на больших площадях.

Во всех случаях характер воздействия лазерного излучения на биологические ткани зависит от длины волны, плотности мощности и режима излучения - непрерывного или импульсного.

Излучение в красной и инфракрасной областях спектра при поглощении биотканями преобразуется в теплоту, которая может расходоваться на испарение вещества, генерацию акустических колебаний, вызывать биохимические реакции.

Излучение в видимой области спектра, помимо тепловых эффектов, обеспечивает условия для стимуляции фотохимических реакций. Так, применение низкоинтенсивного излучения гелий-неонового лазера (длина волны излучения 0,63 мкм) оказывает клинически достоверное действие, приводящее к ускорению заживления трофических и гнойных ран, язв и др. Однако механизм действия этого вида излучения до конца не изучен. Несомненно, что исследования в этом направлении будут способствовать более эффективному и осмысленному применению этого вида излучения в клинической практике.

При использовании лазеров, работающих в непрерывном режиме излучения, преобладает в основном тепловое действие, которое проявляется при средних уровнях мощностей в эффекте коагуляции, а при больших мощностях в эффекте испарения биоткани.

В импульсном режиме действие излучения на биологические объекты более сложно. Взаимодействие излучения с живой тканью здесь носит взрывной характер и сопровождается как тепловыми (коагуляция, испарение) эффектами, так и образованием в биоткани волн сжатия и разрежения, распространяющихся в глубь биоткани. При высоких плотностях мощности возможна ионизация атомов биоткани.

Таким образом, отличие в параметрах лазерного излучения ведет к отличию в механизме и результатах взаимодействия, обеспечивая лазерам широкое поле деятельности для решения различных медицинских задач.

В настоящее время лазеры применяют в таких областях медицины, как хирургия, онкология, офтальмология, терапия, гинекология, урология, нейрохирургия, а также с диагностической целью.

В хирургии лазерный луч нашел широкое применение в качестве универсального скальпеля, превосходящего по своим режущим и кровоостанавливающим свойствам электронож. Механизм взаимодействия лазерного скальпеля с биотканями характеризуется следующими особенностями.

1. Отсутствие прямого механического контакта инструмента с биотканью, устраняющее опасность инфицирования оперируемых органов и обеспечивающее проведение операции на свободном операционном поле.

2. Гемостатическое действие излучения, позволяющее получить практически бескровные разрезы, останавливать кровотечение из кровоточащих тканей.

3. Собственное стерилизующее действие излучения, являющееся активным средством борьбы с инфицированием ран, что предотвращает осложнения в послеоперационном периоде.

4. Возможность управления параметрами лазерного излучения, позволяющая получать различные эффекты при взаимодействии излучения с биотканями.

5. Минимальное воздействие на близлежащие ткани.

Разнообразие проблем, существующих в хирургии, обусловило необходимость всестороннего изучения возможностей применения лазеров с различными параметрами и режимами излучения.

В хирургии в качестве светового скальпеля наиболее широкое применение нашли газовые углекислотные лазеры (длина волны излучения 10,6 мкм), работающие в импульсном и непрерывном режиме с мощностью излучения до 100 Вт.

Механизм действия излучения С0 2 -лазера заключается в нагреве биоткани за счет сильного поглощения ею лазерного излучения. Глубина проникновения этого излучения не превышает 50 мкм. В зависимости от плотности мощности излучения его воздействие проявляется в эффектах разреза или поверхностной коагуляции биоткани.

Разрез ткани осуществляют сфокусированным лазерным лучом за счет послойного испарения ее. Объемная плотность мощности при этом достигает нескольких сотен киловатт на 1 см 3 . Поверхностная коагуляция тканей достигается воздействием на нее расфокусированным лазерным излучением при объемных плотностях порядка нескольких сотен ватт на 1 см 3 .

При мощности лазерного излучения 20 Вт, диаметре сфокусированного пучка лазерного излучения 1 мм (поверхностная плотность мощности 2,5 кВт/см 2) и глубине проникновения излучения 50 мкм объемная плотность мощности лазерного излучения, идущая на нагрев биоткани, достигает 500 кВт/см 3 . Такая чрезвычайно высокая объемная плотность мощности лазерного излучения обеспечивает быстрый нагрев и разрушение биоткани в зоне действия лазерного луча. При этом вначале происходит разложение биоткани с испарением жидкой и карбонизацией твердой фаз. Полная карбонизация биоткани наблюдается в интервале температур 200-220 °С. Карбонизированный каркас биоткани существует до температур 400-450 °С и при дальнейшем повышении температуры - выгорает. При горении карбонизированного каркаса температура газообразных продуктов сгорания составляет 800-1000 °С.

Глубина разреза определяется скоростью перемещения границ слоя разрушения биоткани в глубь ее. При этом скорость перемещения указанной границы зависит от скорости перемещения точки фокусировки лазерного луча вдоль линии разреза. Чем ниже скорость перемещения точки фокусировки вдоль линии разреза, тем больше глубина разреза, и наоборот.

В отличие от излучения с,= 10,6 мкм излучение АИГ-Nd-лазера обладает на порядок большей глубиной проникновения в биоткани, что, несомненно, является благоприятным фактором при коагуляции больших кровеносных сосудов при массивных кровотечениях, а также для разрушения глубоколежащих опухолей.

Таким образом, излучение АИГ-Nd-лазера обладает ярко выраженным коагулирующим (режущее действие излучения этого лазера значительно уступает таковому С0 2 -лазера) действием, что и определяет его область практического применения.

4 МЕРЫ ЗАЩИТЫ ОТ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

При работе с лазерными установками потенциальную опасность для организма человека (пациента, медицинского персонала) представляет неконтролируемое прямое и рассеянное лазерное излучение. Наибольшую опасность оно представляет для зрения оператора, работающего с лазерной установкой. Однако рассеянное инфракрасное лазерное излучение непрерывных углекислотных лазеров установок «Скальпель-1», «Ромашка-1», «Ромашка-2» полностью задерживается слоями слезной жидкости и роговицы глаза и не достигает глазного дна. Поскольку глубина проникновения лазерного излучения не превышает 50 мкм, около 70% его энергии поглощается слезной жидкостью и около 30% -роговицей.

Высокоинтенсивное излучение углекислотного лазера, особенно если оно сфокусировано, может вызывать локальное ожоговое поражение кожи открытых частей тела -рук, лица. Воздействие лазерного излучения на организм человека не проявляется только при интенсивности облучения ниже безопасного уровня, которое для углекислотного лазера непрерывного действия составляет для глаз 0,1 Вт/см 2 . Известно, что в клинических условиях для достижения требуемого клинического эффекта применяют уровни прямого облучения, в сотни и тысячи раз превышающие безопасный уровень, поэтому при работе с углекислотными лазерными установками необходимо соблюдение определенных мер защиты.

В помещении, где выполняют операции с использованием углекислотного лазера, целесообразно стены и потолок покрыть материалом с минимальной отражающей способностью, а_ аппаратуру и приборы с гладкими блестящими поверхностями разместить таким образом, чтобы на них ни при каких обстоятельствах не мог попасть прямой луч, или отгородить их ширмами, с матовыми темными поверхностями. Перед входом в помещение, в котором находится установка, должно быть установлено световое табло («Не_входить»__«Включен лазер»), включаемое во время лазерной операции.

Защита глаз больных и персонала от прямого или отраженного излучения углекислотного лазера надежно гарантируется очками из обычного оптического стекла. Желательно, чтобы очки были изготовлены таким образом, чтобы исключалась возможность попадания лазерного излучения через щели между оправой и лицом и обеспечивалось широкое поле зрения. Очки надевают только на время выполнения лазерного этапа хирургического вмешательства, чтобы предотвратить непосредственное воздействие лазерного облучения на глаза.

При работе с углекислотными лазерными установками использование лазерных хирургических инструментов повышает опасность повреждения кожи рук и лица хирурга за счет отражения от инструментов лазерного луча. Эта опасность резко снижается при применении инструментов, имеющих специальное «чернение». «Черненые» инструменты поглощают около 90% попадающего на них лазерного излучения с длиной волны 10,6 мкм. Другие инструменты - ранорасширители, кровоостанавливающие зажимы, пинцеты, сшивающие аппараты - также могут отражать лазерный луч. Однако в руках опытного хирурга любое хирургическое вмешательство может быть выполнено без направления лазерного луча на эти инструменты. Существует также опасность возгорания операционного материала, салфеток, простыней и др. при попадании на них прямо направленного лазерного излучения, поэтому при работе с ним необходимо в зоне предполагаемой лазерной обработки использовать мягкий материал, смоченный в изотоническом растворе хлорида натрия._ Целесообразно также в момент выполнения лазерного этапа операции удалять из поля действия лазерного излучения приборы и инструменты, изготовленные из пластических масс, способных возгораться при высокой температуре.

Не следует также забывать, что лазерная установка одновременно является и устройством, работающим с использованием электроэнергии. В связи с этим при работе с ней необходимо соблюдать правила электробезопасности, выполняемые при эксплуатации электроустановок потребителей.

Персонал, работающий с лазерными установками, должен пройти специальную подготовку и иметь соответствующую квалификацию. Все лица, работающие с лазерным излучением, регулярно, не менее одного раза в год, должны подвергаться медицинскому обследованию, включающему осмотр офтальмологом, терапевтом и невропатологом. Кроме того, необходим клинический анализ крови с проверкой уровня гемоглобина, числа лейкоцитов и лейкоцитарной формулы. Проводят также основные печеночные пробы.

При аккуратном соблюдении изложенных выше правил опасность повреждения органов, тканей и биологических сред человеческого организма практически отсутствует. Так, за 10-летний период работы с различными лазерными установками, которыми в общей сложности было выполнено несколько тысяч различных операций, мы не наблюдали ни одного случая поражения глаз и кожи лазерным излучением, а также изменений в состоянии здоровья ни у одного из сотрудников учреждения, связанных с работой на лазерных установках.

5 ПРОНИКНОВЕНИЕ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В БИОЛОГИЧЕСКИЕ ТКАНИ

Закономерности, управляющие проникновением излучения в ткани, имеют непосредственное отношение к проблеме механизма биологического действия лазерной радиации. Одна из причин того, что излучение проникает на ограниченную глубину, состоит в поглощении лазерного излучения биологическими тканями, а оно является, за редким исключением, обязательным начальным звеном, которое предшествует цепи изменений, развивающихся в облученном организме. Глубина проникновения лазерного излучения в ткани весьма важна в практическом отношении, так как она является одним из факторов, определяющих границы возможного применения лазеров в клинике.

Поглощение - не единственный процесс, приводящий к ослаблению лазерного излучения при прохождении его через биологические ткани. Одновременно с поглощением излучения происходит ряд других физических процессов, в частности отражение света от поверхности между двумя средами, преломление при прохождении границы, разделяющей две оптически разнородные среды, рассеяние света частицами ткани и др. Таким образом, можно говорить об общем ослаблении излучения, включающем, помимо поглощения, потери за счет других явлений, и об истинном поглощении излучения. При отсутствии рассеяния поглощение в среде характеризуется двумя параметрами: поглощательной способностью и глубиной поглощения. Поглощательная способность определяется как отношение энергии, поглощенной в среде, к энергии излучения, падающей на поверхность среды. Это отношение всегда меньше 1, так как излучение частично проходит сквозь нее. Глубина поглощения характеризует пространственное распределение поглощенной энергии в среде. В простейшем случае (экспоненциальное затухание света в веществе) она равна расстоянию, на котором мощность излучения уменьшается в 2,718 раза по отношению к мощности излучения на поверхности среды. Величина, обратная глубине поглощения, называется коэффициентом поглощения. Он имеет размеренность см -1 . Если наряду с поглощением происходит рассеяние света, то расстояние, на котором в результате совместного действия этих процессов излучение затухает в раз, представляет собой глубину ослабления или проникновения излучения, а обратная ей величина - коэффициент ослабления, также имеющий размерность см -1 .

При теоретическом рассмотрении вопросов поглощения лазерного излучения тканями для упрощения задачи можно принять, что излучение представляет собой плоскую волну, падающую на ровную поверхность объекта, а коэффициент поглощения на всем облучаемом участке одинаков и не зависит от интенсивности света. В этом случае энергия (мощность) излучения по мере увеличения глубины будет уменьшаться экспоненциально, и распределение ее выражается уравнением:

Р=Р 0 ехр (1)

где Р - мощность излучения на глубине; Ро - мощность излучения, падающего на поверхность ткани; - коэффициент поглощения ткани (пренебрегаем потерями на отражение света от гкани).

В реальных условиях при облучении биологических объектов такое простое соотношение между толщиной слоя ткани и количеством поглощенной энергии нарушается, например за счет различий в коэффициентах поглощения разных участков облучаемой ткани. Так, коэффициент поглощения меланиновых гранул сетчатки глаза в 1000 раз больше, чем окружающей ткани. Учитывая, что светопоглощение представляет собой молекулярный процесс, который в конечном счете зависит от концентрации поглощающих излучение молекул, величина поглощения на клеточном и субклеточном уровнях может значительно изменяться даже от органеллы к органелле. Наконец, поглощение является функцией длины волны, следовательно, коэффициент поглощения широко варьирует для лазеров, излучающих в различных областях спектра.

В ряде ранних исследований о величине поглощения биологических тканей судили на основании результатов измерений их светопропускания. При этом в большинстве случаев опыты были проведены с рубиновым и неодимовым лазерами. Так, при облучении рубиновым лазером мышей было установлено, что через кожу проникает от 45 до 60% энергии, а через кожу и подлежащие мышцы - от 20 до 30%. Разработке метода определения коэффициентов пропускания и отражения тканей были посвящены исследования Г. Г. Шамаевой и др. (1969). Данные, полученные с помощью этого метода при облучении крыс неодимовым лазером, были использованы для расчета коэффициента поглощения кожи, составившего 9,9 см -1 .

Л. И. Дерлеменко (1969), М. И. Данко и др. (1972) с помощью интегрального фотометра определяли поглощение излучения неодимового лазера тканями мышц и печени крыс. Через слой ткани толщиной 1 мм при облучении мышц проходило 27- 32% излучения, а печени - 20-23%. Для слоев ткани толщиной 6 мм эти значения составили соответственно 3 и 1,5%.

Приведенные данные демонстрируют зависимость поглощения лазерного излучения от степени окрашенности ткани: обильно пигментированная ткань поглощает излучение интенсивнее, чем ткань мышцы. Та же закономерность проявлялась и в опытах по облучению рубиновым и неодимовым лазерами различных опухолей у животных. Наибольшее поглощение характерно для меланом вследствие наличия в них меланина.

А. М. Уразаев и др. (1978) сравнили степень ослабления излучения гелий-неонового (длина волны 632,8 нм) и аргонового (488 нм) лазеров при прохождении через различные участки тела живых депилированных крыс или через препараты, приготовленные из органов забитых животных. Прошедшее излучение измеряли с помощью фотоэлемента и полученные данные использовали для расчета глубины проникновения лазерного излучения. Почти во всех вариантах опыта излучение красной области спектра проникало на большую глубину, чем сине-зеленое, причем наиболее резко эта разница была выражена при прохождении через интенсивно васкуляризованные органы с обильным кровенаполнением.

Сравнение глубины проникновения в биологические ткани излучения азотного (длина волны 337,1 нм), гелий-кадмиевого (441,6 нм) и гелий-неонового (632,8 нм) лазеров проведено в серии исследований других авторов. Измерения были выполнены на срезах различных органов мышей с помощью двух методов; с применением фотометрического шара или светового зонда. В первом случае фотометрически определяли коэффициент отражения и коэффициент ослабления лазерного излучения в ткани, а последний позволял рассчитать глубину проникновения излучения; во втором в облучаемый образец ткани с противоположной стороны от лазерного луча соосно с ним вводили тонкий (диаметр 0,75 мм) стеклянный световод, соединенный с фотоумножителем. Отодвигая кончик световода на различные известные расстояния от точки падения луча на поверхность ткани и измеряя плотность светового потока, получали кривые распределения интенсивности лазерного излучения в ткани и определяли глубину его проникновения.

Оба примененных метода дали схожие результаты. Наибольшей проникающей способностью отличалось излучение гелий-неонового лазера, наименьшей - гелий-кадмиевого. Во всех случаях глубина проникновения не превышала 2-2,5 мм.

Интересная задача была поставлена в опытах, проведенных В. А. Дубровским и О. Г. Астафьевой (1979), в которых сравнивали величину поглощения красного излучения гемолизатом крови с различными физическими свойствами: поляризованного когерентного излучения гелий-неонового лазера; поляризованного некогерентного излучения лампы накаливания, пропущенного через поляроид и спектральные фильтры; неполяризованного и некогерентного излучения лампы накаливания, пропущенного только через спектральные фильтры. Было установлено, что пространственная когерентность не отражается на поглощении. Выраженное влияние на него оказывают ширина спектра и поляризационные свойства излучения: поляризованное излучение поглощается менее активно, чем неполяризованное.

Наряду с приведенными данными о поглощении биологическими тканями излучения лазеров, которые генерируют в ближней ультрафиолетовой (азотный), видимой (гелий-кадмиевый, аргоновый, гели й-неоновый, рубиновый) и ближней инфракрасной (неодимовый) спектральных областях, практически важной является информация о поглощении излучения СОз-лазера, генерирующего в инфракрасной области на длине волны 10 600 нм. Поскольку это излучение интенсивно поглощается водой, а последняя составляет около 80% массы большинства клеток, при воздействии на биологические ткани излучением СОг-лазера оно практически полностью поглощается поверхностными слоями клеток.

Как отмечалось выше, проникновение лазерного излучения в глубину тканей ограничено вследствие не только поглощения, но и других процессов, в частности отражения излучения от по-нерхности ткани. По данным Б. А. Кудряшова (1976), с. Д. Плетнева (1978) и др., отраженное белой кожей человека и животных излучение лазеров, генерирующих в ближней ультрафиолетовой и видимой областях спектра (азотный, гелий-кадмиевый, аргоновый, гелий-неоновый, рубиновый), составляет 30-40%; для инфракрасного излучения неодимового лазера эта величина не-(колько меньше (20-35%), а в случае более далекого инфракрасного излучения СОг-лазера она уменьшается приблизительно до 5%. Для различных внутренних органов животных величина коэффициента отражения света (633 нм) колеблется от 0,18 (печень) до 0,60 (мозг)

Вследствие ослабления лазерного излучения глубина его проникновения в биологические ткани не превышает нескольких миллиметров, и при практическом применении лазеров нужно исходить из этих условий. Однако наряду с изложенными материалами известны данные, позволяющие сделать более оптимистические выводы. Речь идет о том, что во всех рассмотренных выше исследованиях удалось оценить роль рассеяния излучения в глубине ткани. Когда, например, с помощью фотометрического шара определяли коэффициенты пропускания и отражения образца ткани, выявленная разница в интенсивности излучения, падавшего на поверхность образца и прошедшего сквозь него, представляла собой (за вычетом отраженного излучения) сумму потерь на поглощение и рассеивание, причем доля каждого из этих процессов оставалась неизвестной. В другом случае, когда интенсивность излучения, достигшего данной точки в глубине ткани, измеряли с помощью светового зонда, торец последнего воспринимал только излучение, которое падало «спереди» .На самом деле рассматриваемая точка внутри ткани освещается со всех сторон излучением, рассеянным частицами, окружающими ее. Следовательно, с помощью указанного метода получали заниженные показатели распределения интенсивности излучения по глубине, что не позволяло учесть рассеянный свет. Вместе с тем в интенсивно рассеивающих средах, каковыми являются биологические ткани, доля рассеянного излучения весьма значительна.

С учетом этих положений в серии обстоятельных исследований. Dougherty и соавт. (1975, 1978) была сделана попытка выяснить влияние светорассеивания на глубину проникновения излучения в ткани. Авторы с помощью фотоэлемента определяли долю светового излучения ксеноновой лампы (выделялась область 620-640 нм),прошедшего сквозь срезы различной толщины, которые были получены из перевивной опухоли молочной железы мышей или из их нормальных тканей. Полученные величины коэффициента светопропускания использовали для вычисления коэффициентов рассеяния (S) и поглощения (К) из соотношений, установленных P. Kubelka (1964) и F. Kottler (I960). Значения, полученные для опухолевой ткани, составляли S = 13,5 и К = 0,04, откуда видно, что доля рассеянного света намного превышает долю поглощенного. I

Во второй работе, проведенной в 1978 г. той же группой исследователей, были применены два метода, которые позволяли псе величины внутритканевой интенсивности света, как найденные без учета рассеивания, так и включающие его, получить прямым экспериментальным путем. В случае использования одного из методов в глубину свежеиссеченной опухоли (рабдомиоифкомы крыс) вводили волоконный световод толщиной 0,8 мм и его конец, выступающий из ткани, направляли луч гелий-неонового лазера мощностью 2 мВт. С противоположной стороны образца вводили другой световод, соединенный с фотометром. Приводя сначала световоды в соприкосновение, а затем раздвигая их па известные расстояния, измеряли интенсивность излучения, прошедшего сквозь слой ткани фиксированной толщины. Как и в описанных выше опытах, этот метод не позволял учесть рассеянный нет.

Вторая методика была актинометрической (фотохимической) и состояла в том, что в опухолевую ткань на определенную глубину вводили несколько капиллярных трубок диаметром 1 мм, заполненных раствором фоточувствительной смеси. Облучая затем образец ткани светом известной интенсивности с помощью лампы накаливания (длины волн более 600 нм), определяли количество продукта фотохимической реакции, которое было прямо пропорционально интенсивности света и являлось функцией глубины расположения трубок. Очевидно, при такой схеме проведения экспериментов на ход реакции влияло все излучение, дошедшее до данной точки в глубине ткани, в том числе и рассеянный свет. Данные, представленные на рис. 2, позволяют сопоставить результаты, полученные с помощью этих методов. Из графика видно, что интенсивность излучения в опухолевой ткани на одной и той же глубине, определенная актинометрическим способом, существенно выше той, которую устанавливали с помощью волоконнооптической техники. Так, из кривой актинометрических измерений видно, что на глубине 2 см в ткань еще проникает около 8% излучения, тогда как, согласно второй кривой, эта величина составляет менее 0,1% К

Таким образом, значительное преобладание рассеяния видимого света при прохождении его через биологические ткани над поглощением позволяет сделать заключение, что способность лазерного излучения проникать в ткани выше, чем принято считать. Если учесть возможность проведения лазерного излучения вглубь тканей с помощью волоконной оптики и последующее распределение его в толще облучаемого очага благодаря рассеянию, можно попытаться значительно раздвинуть рамки клинического применения лазеров.

6 ПАТОГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ ВЗАИМОДЕЙСТВИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ С БИОЛОГИЧЕСКИМИ ТКАНЯМИ

Монохроматичность, строгая направленность, когерентность и свойство концентрировать большое количество энергии на малых площадях дают возможность избирательно коагулировать, испарять и резать биологические ткани бесконтактно, с хорошим гемостазом, стерильностью и абластичностью.

При взаимодействии лазерного излучения с биологическими тканями наблюдается целый ряд эффектов: термический, обусловленный селективным поглощением квантов света, возникновение волн сдавления и упругого удара в среде, действие мощных электромагнитных полей, сопровождающих в ряде случаев лазерное излучение, а также ряд других эффектов, обусловленных оптическими свойствами самой среды.

При воздействии лазерного излучения на ткани важное значение имеет степень его фокусировки. Во время прохождения сфокусированного луча лазера через живые ткани интенсивность излучения быстро падает и для мышечной ткани на глубине 4 см составляет лишь 1-2% начальной энергии. Степень и результат биологического действия лазерного излучения на разные клетки, ткани и органы зависят не только от особенностей излучения (тип лазера, длительность и плотность мощности излучения, частота импульсов и др.), но и от физико-химических и биологических особенностей облучаемых тканей или органов/(интенсивность кровотока, гетерогенность, теплопроводность, коэффициент поглощения и отражения различных промежуточных поверхностей внутри среды и др.). Наиболее чувствительными и легко разрушающимися под воздействием лазерного излучения структурами оказались внутриклеточные компоненты клетки.

Возможность концентрации лазерного излучения в узкий пучок привела к созданию лазерного скальпеля, позволяющего производить практически бескровные разрезы различных тканей. В настоящее время уже накоплен большой опыт использования лазерного излучения в экспериментальной и клинической медицине.

Гемостатические свойства лазерного излучения можно повысить, применяя специальные компрессионные зажимы и лазерные хирургические инструменты, обеспечивающие кратковременное сдавливание и обескровливание тканей по линии предполагаемого разреза. Принцип дозированной компрессии позволяет также значительно уменьшить объем термического некроза тканей, так как в условиях компрессии значительно повышается теплопроводность тканей. В связи с этим одна и та же плотность энергии сфокусированного луча лазера дает возможность более быстро осуществить рассечение тканей при компрессии, обеспечивающей локальную ишемию тканей.

Использование лазера в комплексе со специальными инструментами обеспечивает не только рассечение тканей, но и так называемую биологическую сварку их. Эффект сварки клеточных и тканевых структур отмечен исследователями, применявшими лазерный луч для рассечения различных органов. Однако только с созданием специальной лазерной хирургической аппаратуры удалось наиболее полно реализовать эффект биологической сварки тканей полых органов во время их рассечения. В облучаемой зоне наблюдается повышенная светоабсорбция за счет большей оптической плотности сжатых тканей и многократного отражения света от внутренних частей аппарата, образующих замкнутое пространство. «Сварка» тканей полых органов происходит послойно вдоль линии разреза в зоне локального сжатия тканей, производимого этими аппаратами.

Морфологическим проявлением изменений, лежащих в основе этого феномена, является коагуляционный термический некроз подвергнутых компрессии тканей с образованием по краю разреза пленки из коагулированных тканевых и клеточных элементов, соединяющей на одном уровне все анатомические слои органа

Следствием трансформации световой энергии излучения в термическую в слизистой оболочке является деформация и укорочение желез, сморщивание эпителиальных клеток с компактным расположением их ядер. Образовавшиеся структуры напоминают «частокол». В мышечной оболочке морфологические изменения менее выражены. Подслизистая основа в зоне «сварки»

Глубина (мкм) термических повреждений стенки желудка при гастротомии с помощью углекислотного лазера (по данным световой микроскопии)

становится слабо различимой. Ширина зоны коагуляционного некроза по краю рассекаемых тканей в этих случаях находится в пределах 1-2 мм. Объем некротических повреждений может быть уменьшен как благодаря увеличению количества жидкости в рассекаемых тканях, так и путем использования адекватной лазерной аппаратуры. Например, при рассечении скелетной мышцы углекислотным лазером ширина зоны коагуляционного некроза, достигающая 1,1-1,2 мм, после предварительного введения жидкости в мышцу уменьшается на 28-40%

В свою очередь применение усовершенствованной в последние годы специальной лазерной хирургической аппаратуры также позволяет сократить зону коагуляционного термического некроза до 30-60 мкм (табл. 1).

В связи с исключительно высокой температурой, присущей лазерному излучению, происходит чрезвычайно быстрое испарение межтканевой и внутриклеточной жидкости, а затем сгорание сухого остатка. Глубина и степень дистрофических изменений тканей при воздействии различных видов лазерного излучения зависят как от их спектральных характеристик, так и от суммарной энергии (продолжительность воздействия) излучения. При небольших экспозициях деструкции подвергаются лишь поверхностные слои тканей. Последовательное увеличение времени воздействия излучения сопровождается увеличением объема поврежденных тканей вплоть до перфорации органа. Перемещение лазерного луча в продольном или поперечном направлении ведет к испарению тканей и формированию линейного разреза органа.

В зоне коагуляционного термического некроза происходит коагуляция стенок сосудов и крови с образованием коагуляционного гиалиноподобного тромба, закупоривающего просвет сосуда и обеспечивающего адекватный гемостаз. В условиях дозированной компрессии при использовании лазерных хирургических аппаратов гемостатический эффект лазерного излучения в значительной степени усиливается, так как

Схематическое изображение лазерной раны желудка

Сосуды с редуцированным кровообращением моментально коагулируются.

Морфология лазерной раны имеет характерные черты, резко отличающие ее от ран другого происхождения. Подвергшиеся термическому воздействию ткани представлены коагуляционным некрозом, формирующим лазерный термический струп. Последний плотно прикрывает поверхность раны. Непосредственно после лазерного воздействия трудно определить полный объем некротизированных тканей. Граница подвергшихся коагуляционному некрозу тканей стабилизируется в основном через сутки. В этот период в узкой зоне сохранившихся тканей на границе с термическим некрозом обнаруживают отек и различной степени выраженности расстройства кровообращения, проявляющиеся гиперемией, стазами, периваскулярными диапедезными кровоизлияниями.

На основе гистологических исследований выделены следующие зоны лазерного воздействия: зона коагуляционного некроза, периферическую часть которой составляет узкий рыхлый («спонгиозный») слой, а центральную - широкий, компактный, и зона воспалительного отека (рис.23).

Отмечены микроциркуляторные расстройства, наиболее выраженные при воздействии излучения АИГ-Nd-лазера и аргонового лазера (при гемостазе острых кровоточащих язв желудка). Процесс рассечения тканей углекислотным лазером сопровождается строго локальной коагуляцией последних по линии разреза, предотвращая тем самым повреждение окружающих тканей.

В лазерных ранах в отличие от ран другого происхождения слабо выражены или даже отсутствуют переходные зоны от коагулированных тканей к жизнеспособным. Регенерация в этих случаях начинается в основном в клетках зоны, не поврежденной лазерным излучением.

Известно, что повреждение тканей сопровождается выбросом медиаторов воспаления. Среди последних выделяют плазменные (циркулирующие) медиаторы, а также клеточные (локальные) медиаторы, связанные с деятельностью многих клеток - лаброцитов, тромбоцитов, макрофагов, лимфоцитов, полиморфно-ядерных лейкоцитов и др. В частности, роль полиморфно-ядерных лейкоцитов в раневом процессе заключается прежде всего в лизисе мертвых тканей и фагоцитозе микробов. Любое уменьшение степени микробного обсеменения ведет к уменьшению интенсивности всех компонентов воспаления. При бактериологическом исследовании материала с поверхности ран и 1 г ткани при иссечении гнойных ран и некрэктомии с помощью углекислотного лазера у 62 больных из 100 наблюдалась полная стерильность, а в остальных случаях отмечалось снижение содержания микробов ниже критического уровня (10 5).

Уменьшение степени микробного обсеменения лазерной раны, коагуляционный характер термического некроза и тромбоз сосудов в зоне некроза способствуют снижению экссудативного компонента воспаления. Наличие слабо выраженной лейкоцитарной реакции, а порой и полное ее отсутствие в краях лазерной раны подтверждено работами большинства исследователей. Коагулированные ткани не являются источником вазоактивных посредников, в частности кининов, играющих столь важную роль в становлении и развитии экссудативной фазы воспалительной реакции.

По данным В. И. Елисеенко (1980-1985), для лазерных ран характерна активная ранняя пролиферация клеточных элементов макрофагального и фибробластического ряда, обусловливающая ход репаративного процесса по типу асептического продуктивного воспаления. Пролиферация макрофагов и фибробластов в очаге продуктивного воспаления, начинающаяся с первых суток после воздействия лазерного излучения, лежит в основе формирующейся грануляционной ткани.

Однако имеются данные о том, что заживление лазерных ран может идти обычным путем, т. е. включая фазу лейкоцитарного расплавления некротизированных тканей. Заживление лазерных ран, по данным Ю. Г. Пархоменко (1979, 1983), протекает в основном под лазерным струпом. Преобразование лазерного струпа заключается в постепенной его организации и рассасывании (в паренхиматозных органах - печени и поджелудочной железе) или отторжении (в органах желудочно-кишечного тракта) по мере созревания грануляционной ткани.

Существенное значение в процессе заживления лазерных ран имеют клетки системы мононуклеарных фагоцитов - макрофаги. Макрофаги управляют дифференцировкой гранулоцитов и моноцитов из стволовой клетки, влияют на функциональную активность Т- и В-лимфоцитов, а также принимают участие а их кооперации. Они секретируют шесть первых компонентов комплемента, являясь, таким образом, посредниками привлечения иммунной системы в воспалительную реакцию. Макрофаги индуцируют роль фибробластов и синтез коллагена, т. е. являются стимуляторами завершающей фазы репаративной реакции) при воспалении. В частности, обнаружены клеточные контакты между макрофагами и фибробластами грануляционной ткани.

Можно предположить, что интенсивная и продолжительная макрофагальная реакция в лазерных ранах, связанная с длительной сохранностью коагулированных тканей, является фактором, активно стимулирующим процесс коллагенообразования..По мнению В. И. Елисеенко и соавт. (1982, 1985), функциональная роль пролиферирующих макрофагов заключается в «программировании» всего хода процесса заживления лазерных хирургических ран.

Фибробластическая реакция в процессах раннего заживления лазерных ран занимает одно из ведущих мест.

В лазерных ранах в период активного роста грануляционной ткани (5-10-е сутки) высокая плотность расположения фибробластов сочетается с наиболее резким увеличением активности НАД (НАДФ)-липоамид-дегидрогеназы (устар. диафоразы) в этих клетках, что в определенной степени может отражать повышение в них уровня энергетических и синтетических процессов. Позднее ферментативная активность этих клеток постепенно снижается, что свидетельствует об их созревании.

В формирующемся рубце лазерной раны происходит быстрое, диффузное накопление гликозаминогликанов основного вещества соединительной ткани, что свидетельствует о созревании грануляционной ткани. Известно, что после максимального увеличения числа фибробластов и их созревания усиливается и синтез коллагеновых волокон.

В процессе заживления лазерных хирургических ран органов желудочно-кишечного тракта прослеживается отчетливая взаимосвязь созревания соединительной ткани с ростом эпителия.

Таким образом, реакция макрофагов, пролиферация фибробластов и коллагеногенез проявляются очень рано и выражены тем сильнее, чем менее выражена лейкоцитарная инфильтрация, отсутствие которой обеспечивает заживление лазерных ран первичным натяжением.

7 МЕХАНИЗМЫ ЛАЗЕРНОЙ БИОСТИМУЛЯЦИИ

Отдельно следует рассмотреть вопрос о природе биостимулирующей активности низкоэнергетического лазерного излучения красной области спектра, которое получают главным образом с помощью гелий-неоновых лазеров. Благотворное влияние этого излучения было установлено в экспериментах на разных биологических объектах.

В 70-х годах были сделаны попытки объяснить явление лазерной биостимуляции особыми свойствами («биополе», «биоплазма»), которые якобы присущи живым организмам и придают специфическим характеристикам лазерного излучения биологическую значимость. В 1979 г. было выдвинуто предположение, что биологические эффекты низкоэнергетического лазерного излучения связаны с естественными процессами световой регуляции, наблюдающимися у животных. Молекулярная основа начальных этапов таких процессов лучше изучена у растений, для которых установлены не только сам факт фоторегуляции, но и химическая природа одного из первичных акцепторов света- фитохрома. Этот хромопротеид существует в двух формах, одна из которых поглощает свет вблизи 660 нм, а другая - 730 нм. Вследствие взаимопревращения этих форм при освещении меняется их количественное соотношение, что является пусковым механизмом в цепи процессов, приводящих в конечном счете к прорастанию семян, образованию почек, зацветанию растений и другим формообразовательным эффектам. Хотя не вызывает сомнения тот факт, что и у животных в основе таких явлений, как цикличность полового размножения или приуроченность ряда приспособительных реакций (линька и спячка млекопитающих, перелеты птиц) к определенным периодам года, лежат фоторегуляторные процессы, молекулярные механизмы их неясны

Представления о существовании в клетках животных определенной фоторегуляторной системы, возможно, напоминающей фитохромную систему растений, позволяют предположить, что биостимуляционная активность излучения гелий-неонового лазера является следствием простого совпадения его спектральных характеристик с областью поглощения компонентов этой системы. В этом случае следовало ожидать, что монохроматический красный свет некогерентных источников будет также биологически эффективным. Для экспериментальной проверки этого и других вопросов были необходимы чувствительные тесты, дающие количественные, хорошо воспроизводимые и точно измеряемые результаты. Подавляющее большинство исследований с гелий-неоновым лазером было проведено на животных или непосредственно на больных в условиях, не отвечающих этим требованиям.

При выборе подходящей модельной системы исходили из двух предпосылок: 1) клетки, развивающиеся или переживающие в условиях in vitro, представляют собой сравнительно простой тест-объект, позволяющий проводить точный учет условий воздействия и его результатов; 2) особого внимания заслуживает реакция поверхностной мембраны клеток, высокая чувствительность которого установлена ранее в опытах с низкоэнергетическим красным излучением рубинового лазера.

В исследованиях, проведенных Н. Ф. Гамалея и др. было изучено влияние излучения гелий-неонового лазера на поверхностную мембрану лимфоцитов, выделенных из крови человека. С этой целью оценивали способность лимфоцитов образовывать Е-розетки - взаимодействовать с эритроцитами барана. Установлено, что при низких дозах облучения (плотность мощности 0,1-0,5 Вт/м 2 , экспозиция 15 с), которые на полтора -два порядка ниже, чем используемые в клинических работах с гелий-неоновым лазером, происходит небольшое, но статистически достоверное повышение розеткообразовательной способности (в 1,2-1,4 раза) у облученных лимфоцитов по сравнению с контролем. Параллельно с цитомембранными изменениями повышалась функциональная активность лимфоцитов, в частности в 2- 6 раз возрастала их способность к делению, которую определяли в реакции бласттрансформации с фитогемагглютинином [Новиков Д. К., Новикова В. И., 1979], оценивая по накоплению клетками 3 Н-тимидина. В экспериментах на лейкоцитах крови человека было установлено, что при воздействии на них излучения гелий-неонового лазера в таких же низких дозах в 1,5-2 раза усиливается фагоцитоз клетками кишечной палочки (как захватывание, так и переваривание). Излучение гелий-неонового лазера оказывало стимулирующее действие также на другие клетки. Так, в культуре опухолевых клеток мыши (L) задержка их роста в 1-е сутки после облучения сменялась его ускорением, которое было особенно заметно на 3-4-е сутки, когда количество делящихся клеток в 2 раза больше, чем в контроле

Таким образом, было показано, что излучение гелий-неонового лазера очень низкой интенсивности вызывает изменения в мембране клеток разных типов и стимуляцию их функциональной активности. Изменения цитоплазматической мембраны в культивируемых клетках китайского хомячка, облученных гелий-неоновым лазером, выявили также А. К. Абдвахитова и др. (1982) с помощью метода флюоресцентных зондов, хотя использованные ими дозы излучения на два порядка превышали примененные нами.

В гипотезе, выдвинутой венгерским хирургом Е. Местером совместно с группой физиков, предпринята попытка объяснить биостимуляционную активность лазерного излучения исключительно его поляризованностью: благодаря поляризации излучения оно способно реагировать с полярными молекулами липидов в двойном липидном слое цитоплазматической мембраны, что и запускает цепь изменений в клетке. Согласно предложенной модели, стимулирующий эффект не должен зависеть от длины волны излучения. Однако экспериментальные данные этого не подтверждают.

Надежная воспроизводимость биостимуляционного эффекта позволила пойти дальше и попытаться выяснить, вызывается ли этот эффект только лазерным (когерентным, поляризованным) излучением и как он зависит от длины волны. С этой целью путем применения теста на розеткообразование было оценено влияние на лимфоциты крови человека монохроматического красного света (633 ± 5 нм), полученного от ксеноновой лампы с помощью дифракционного монохроматора. Установлено, что при сравнимой дозе некогерентного красного света (3 Дж/м 3) процесс розеткообразования стимулировался так же, как и при использовании гелий-неонового лазера.

Далее эффект красного света был сопоставлен с действием излучения других узких спектральных участков видимой области. При этом активность света оценивали по его влиянию на три процесса: образование Е-розеток лимфоцитами человека, размножение клеток культуры L и выделение в среду лимфоцитами мышей вещества с максимумом поглощения 265 нм. (Последний тест являлся развитием результатов проведенных наблюдений и основывался на том, что из подвергнутых лазерному облучению клеток усиливается выделение определенного химического фактора, имеющего полосу поглощения в области 260- 265 нм.) Опыты показали, что стимуляция всех трех процессов отмечается при облучении монохроматическим светом одних и тех же спектральных участков: красного (633 нм), зеленого (500 и 550 нм) и фиолетового (415 нм).

Таким образом проведенные исследования позволили выявить у разных клеток человека и животных наличие высокой световой чувствительности, даже значительно большей, чем можно было ожидать на основании клинических результатов лазерной биостимуляционной терапии. Эта чувствительность не была обусловлена когерентностью и поляризацией света и не ограничивалась красной областью спектра: наряду с максимумом в этой области имелись два других - в фиолетовом и зеленом участках спектра.

Используя иной методический подход (определение интенсивности синтеза ДНК в клетках культуры HeLa по включению меченого тимидина), Т. Й. Кару и др. (1982, 1983) также показали, что эффект биостимуляции не связан с когерентностью и поляризацией света. В выполненных ими опытах с облучением клеток красным светом максимальная стимуляция синтеза ДНК наблюдалась при дозе 100 Дж/м 2 и эффект быстро снижался при ее изменении в любую сторону. При сравнении активности излучения в различных участках спектра были установлены три максимума: вблизи 400, 630 и 760 нм.

К механизму световой биостимуляции. может иметь отношение образование в облученных клетках и выделение ими того химического фактора, который обнаруживали в среде по пику светоабсорбции вблизи 265 нм. Для выяснения природы этого фактора были проведены хроматография на бумаге и электрофорез в агарозном геле с визуализацией зон бромистым этидием, позволившие обнаружить в выделяемом клетками материале двуспиральную ДНК с молекулярной массой. Двуспиральность структуры ДНК подтверждалась появлением гиперхромного эффекта при нагревании.

Приводимые в литературе сведения о способности нуклеиновых кислот ускорять восстановление поврежденных тканей [Белоус А. М. и др., 1974] подтверждали возможную причастность выделяемого клетками ДНК-фактора к световой биостимуляции. Для проверки этой гипотезы был поставлен эксперимент на клетках линии L, часть из которых облучали гелий-неоновым лазеpoм, а другую часть, которая не была облучена, помещали, однако, в среду, взятую от облученных клеток и, следовательно, содержавшую ДНК-фактор. Определение скорости роста (митотической активности) клеток показало, что в обеих группах развитие клеток по сравнению с контролем стимулировалось одинаково Более того, разрушение ДНК в среде, взятой от облученных клеток, с помощью фермента ДНКазы лишало эту среду биостимулирующей активности. Сама ДНКаза на рост клеток практически не влияла.

Следовательно, можно думать, что и при действии на ткани целостного организма (например, при лазерной терапии трофических язв) облучение клеток на периферии патологического очага приводит к выделению ими ДНК-фактора, который стимулирует рост фибробластических элементов в тканях, окружающих язву, тем самым ускоряя ее заживление. Однако однозначное доказательство этого может быть получено лишь в опытах на животных.

Таким образом, представленные данные, по-видимому, являются обоснованием целесообразности применения лазерной (или вообще световой биостимуляции) в лечебных целях и указывают пути дальнейшего развития этого метода. Эти данные имеют и более широкое фитобиологическое значение, состоящее в том, что впервые установлена специфическая световая чувствительность неретинальных (незрительных) клеток человека и животных, которая характеризуется рядом особенностей. Эта чувствительность спектрально зависима и чрезвычайно высока: использованные нами плотности мощности, равные десятым долям ватта на квадратный метр, сравнимы с теми, которые являются эффективными для фоторегуляторных систем растений.Как удалось установить с помощью теста на выделение ДНК-фактора, такой фоточувствительностью обладают клетки человека и животных разной видовой принадлежности, взятые из тканей и органов: лимфоциты мыши, собаки и человека, печеночные клетки крысы, клетки культур, полученных из фибробластов человека, почки хомяка и озлокачествленных фибробластов мыши.

Все эти факты подтверждают предположение о том, что у млекопитающих имеется специальная система восприятия света, возможно, подобная фитохромной системе растений и также выполняющая регуляторные функции. О сходстве предполагаемой фоточувствительной системы животных с системой фитохромной регуляции свидетельствует сравнение их основных особенностей.Помимо высокой световой чувствительности, фитохромной системе свойственны недозовый (триггерный) характер действия, который заставляет вспомнить и, может быть, объясняет большую вариабельность доз (с различиями в два порядка), используемых клиницистами для лазерной биостимуляции; сопряженность фитохромной системы (так же, как и описанных нами эффектов) с клеточными мембранами; контроль фитохромной системы над синтезом ДНК,РНК и белка, образование которых в тканях, облученных гелий-неоновым лазером, по данным многих авторов, также усиливается.

В том случае, если в клетках животных действительно имеется специализированная фоточувствительная система, тогда с помощью опытов по определению спектра действия (зависимости величины биологической реакции от длины волны) можно попытаться установить спектр поглощения (а по нему - и химическую индивидуальность) того соединения, которое является первичным акцептором света и запускает цепь процессов, приводящих в конечном итоге к фоторегуляторным эффектам. Соответствие между спектрами действия и спектром поглощения светоакцептора достигается, однако, лишь в том случае, если при постановке экспериментов выполняется ряд методических условий, что на практике является весьма сложной задачей

Тем не менее нельзя не обратить внимание на сходство всех трех кривых, характеризующих спектральную зависимость различных апробированных нами биологических эффектов, с типичным спектром поглощения порфириновых соединений. Это позволяет полагать, что светоакцептором в гипотетической системе фоторегуляции животных клеток служит какое-то соединение из группы порфиринов, являющихся, как известно, составной частью многих важных биохимических компонентов организма животных - гемоглобина, цитохромов, ряда ферментов и др. С. М. Зубкова (1978) высказала предположение, что биостимулирующее действие излучения гелий-неонового лазера связано с его поглощением порфиринсодержащим ферментом каталазой, имеющим максимум светоабсорбции ~628 нм. Облучение клеток на периферии патологического очага приводит к выделению ими ДНК-фактора, который стимулирует рост фибробластических элементов в тканях, окружающих язву, тем самым ускоряя ее заживление. Однако однозначное доказательство этого может быть получено лишь в опытах на животных.

Таким образом, представленные данные, по-видимому, являются обоснованием целесообразности применения лазерной (или вообще световой биостимуляции) в лечебных целях и указывают пути дальнейшего развития этого метода. Эти данные имеют и более широкое фитобиологическое значение, состоящее в том, что впервые установлена специфическая световая чувствительность неретинальных (незрительных) клеток человека и животных, которая характеризуется рядом особенностей. Эта чувствительность спектрально зависима и чрезвычайно высока: использованные плотности мощности, равные десятым долям ватта на квадратный метр, сравнимы с теми, которые являются эффективными для фоторегуляторных систем растений . Как удалось установить с помощью теста на выделение ДНК-фактора, такой фоточувствительностью обладают клетки человека и животных разной видовой принадлежности, взятые из тканей и органов: лимфоциты мыши, собаки и человека, печеночные клетки крысы, клетки культур, полученных из фибробластов человека, почки хомяка и озлокачествленных фибробластов мыши.

Все эти факты подтверждают предположение о том, что у млекопитающих имеется специальная система восприятия света, возможно, подобная фитохромной системе растений и также выполняющая регуляторные функции. О сходстве предполагаемой фоточувствительной системы животных с системой фитохромной регуляции свидетельствует сравнение их основных особенностей. Помимо высокой световой чувствительности, фитохромной системе свойственны недозовый (триггерный) характер действия, который заставляет вспомнить и, может быть, объясняет большую вариабельность доз (с различиями в два порядка), используемых клиницистами для лазерной биостимуляции; сопряженность фитохромной системы (так же, как и описанных нами эффектов) с клеточными мембранами; контроль фитохромной системы над синтезом ДНК,РНК и белка, образование которых в тканях, облученных гелий-неоновым лазером, по данным многих авторов, также усиливается.

В том случае, если в клетках животных действительно имеется специализированная фоточувствительная система, тогда с помощью опытов по определению спектра действия (зависимости величины биологической реакции от длины волны) можно попытаться установить спектр поглощения (а по нему - и химическую индивидуальность) того соединения, которое является первичным акцептором света и запускает цепь процессов, приводящих в конечном итоге к фоторегуляторным эффектам. Соответствие между спектрами действия и спектром поглощения светоакцептора достигается, однако, лишь в том случае, если при постановке экспериментов выполняется ряд методических условий, что на практике является весьма сложной задачей .


ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

1. А. Н. РЕМИЗОВ «МЕДИЦИНСКАЯ И БИОЛОГИЧЕСКАЯ ФИЗИКА»

2. «ЛАЗЕРЫ В ХИРУРГИИ» ПОД РЕДАКЦИЕЙ ПРОФ. О.К. СКОБЕЛКИНА

3. «ЛАЗЕРЫ В КЛИНИЧЕСКОЙ МЕДИЦИНЕ» ПОД РЕДАКЦИЕЙ С. Д. ПЛЕТНЕВА

Слово LASER (Light Amplifacation by the Stimulated Emission ) с английского переводится как Усиление Света путем Стимулирования Излучения . Само действие лазера было описано еще Энштейном в далеком 1917 году, но первый работающий лазер был построен лишь спустя 43 года Теодором Мейманом, который работал в компании Hugрes Aircraft. Для получения миллисекундных импульсов лазерного излучения он использовал кристалл искусственного рубина как активную среду. Длина волны того лазера была 694 нм. Через некоторое время был испробован уже лазер с длиной волны в 1060 нм, что является ближней ИК-областью спектра. В качестве активной среды в этом лазере выступали стеклянные стержни, легированные неодимом.

Но практического применения в то время лазер не имел. Ведущие специалисты-физики искали ему предназначение в различных сферах деятельности человека. Первые экспериментальные опыты с лазером в медицине были не совсем успешные. Лазерное излучение, на тех волнах довольно плохо поглощалось, точно контролировать мощность еще не было возможности. Однако в 60-х годах лазер на красном рубине хорошо себя показал в офтальмологии.

История применения лазеров в медицине

В 1964 году был разработан и опробован аргоновый ионный лазер. Это был лазер непрерывного излучения с сине-зеленой областью спектра и длиной волны в 488 нм. Это газовый лазер и контролировать мощность его было легче. Гемоглобин хорошо поглощал его излучение. Спустя короткое время стали появляться лазерные системы на основе аргонового лазера, которые помогали в лечении заболеваний сетчатки глаза.

В том же 64 году в лаборатории Bell был разработан лазер на алюмоитриевом гранате, легированным неодимом () и . СО2 — это газовый лазер, у которого излучение имеет непрерывный характер, с длиной волны 1060 нм. Вода очень хорошо поглощает его излучение. А так как мягкие ткани у человека в основном состоят из воды, то лазер СО2 стал хорошей альтернативой обычному скальпелю. При использовании этого лазера для разрезания тканей сводится к минимуму кровопотеря. В 70-х годах углекислотные лазеры нашли широкое применение в госпиталях при институтах в США. Сфера применения в то время для лазерных скальпелей: гинекология и отоларингология.

1969 год стал годом разработки первого импульсного лазера на красителях, а уже в 1975 году появился первый эксимерный лазер. Начиная с этого времени лазер стал активно использоваться и внедряться в различные сферы деятельности.

Широкое распространение лазеры в медицине начали получать в 80-х годах в больницах и клиниках США. В большинстве своем тогда использовались углекислотные и аргоновые лазеры и применялись они в хирургии и офтальмологии. В недостатки лазеров того времени можно записать то, что у них было постоянное непрерывное излучение, которое исключало возможность более точной работы, что приводило к тепловым поражениям тканей вокруг обрабатываемой зоны. Успешное применение лазерных технологий в то время требовало колоссального опыта работы.

Следующим шагом в разработке лазерных технологий для медицины стало изобретение импульсного лазера. Такой лазер позволял воздействовать исключительно на проблемную зону, без повреждения окружающих тканей. И в 80-х годах появились первые . Это стало началом применения лазеров в косметологии. Такие лазерные системы могли удалять капиллярные гемангиомы и родимые пятна. Чуть позже появились лазеры способные . Это были лазеры с модуляцией добротности (Q-switched lser).

Начало 90-х годов были разработаны и внедрены технологии сканирования. Точность лазерной обработки теперь контролировалась компьютером и появилась возможность проводить лазерную шлифовку кожи (), что значительно подняло популярность и .

Сегодня область применения лазеров в медицине очень широкая. Это хирургия, офтальмология, стоматология, нейрохирургия, косметология, урология, гинекология, кардиология и т.д. Вы можете себе представить, что когда то лазер лишь был неплохой альтернативой скальпелю, а сегодня с его помощью можно удалять раковые клетки, производить очень точные операции на различных органах, диагностировать серьезные заболевания на самых ранних стадиях, такие как рак. Сейчас лазерные технологии в медицине идут в сторону развития комбинированных методов лечения, когда на ряду с лазерной терапией применяют физиотерапию,медикаменты, УЗ. К примеру в лечении гнойных заболеваний был разработан комплекс мероприятий, который включает лазерную обработку, использование антиоксидантов и различных биологически активных материалов.

Лазерные технологии и медицина должны идти рука об руку в будущее. Даже уже сегодня новейшие разработки в лазерной медицине помогают в удалении раковых опухолей, применяются в коррекции тела в косметологии и зрения в офтальмологии. Малоинвазивная хирургия, когда с использованием лазера делаются очень сложные операции.

Дополнительная информация:

Применение лазеров в медицине принципиально отличается от других многочисленных областей технологических применения лазеров. Лазерные медицинские технологии отличаются гуманистической направленностью. Если проблема здоровья стоит достаточно остро для самого человека или его близкого, то проблемы медицины становятся неизмеримо важнее любых других проблем.

Лазерные медицинские технологии отличаются многоплановостью, комплексностью, разнообразием. Лазерная медицина включает воздействие лазерного излучения на различные части тела: кожа, кости, мышцы, жировые ткани, сухожилия, внутренние органы, глаза, зубные ткани и т. п. При этом каждая из них в свою очередь имеет сложное строение. Так в зубе можно отдельно рассматривать эмаль, дентин, пульпу. В коже - роговой слой, эпидермис, дерму. Все эти ткани имеют свои свойства, как оптические (спектральные характеристики, коэффициент отражения, глубина проникновения излучения), так и теплофизические (теплопроводность, температуропроводность, теплоемкость), отличные от свойств других биотканей. Поэтому различается и характер воздействия на них лазерного излучения. Соответственно, в каждом случае необходимо выбирать индивидуальные параметры режима облучения: длину волны, длительность воздействия, мощность, частоту следования импульсов и т.п. Сильное различие свойств биотканей делает возможным специфические воздействия, например, чрескожное воздействие на патологические ткани (облучение подкожных тканей без существенного повреждения кожи).

Каждая ткань в силу своей биологической природы неоднородна, имеет сложную микроструктуру. В состав мягких тканей входит значительное количество воды. В состав костей входят различные минералы. Следствием этого является тот факт, что воздействие излучения на ткани, в особенности разрушающее, хирургическое, для разных тканей и длин волн излучения различается не только количественно, но и качественно. Это означает, что существует несколько совершенно различных механизмов удаления биологических тканей: тепловой и низкоэнергетический коагуляционный с последующей резорбцией, взрывные механизмы, «холодная» абляция.

Интересно, что для осуществления терапевтического воздействия на определенную часть тела лазерное воздействие может быть направлено совсем на другой объект. Здесь показательным является лазерная терапия, когда облучение крови, особых точек или проекций органов на коже человека (зоны Захарьина - Геда), стопе или ладони, области позвоночника оказывает воздействие на внутренние органы, весьма удаленные от области воздействия, и на весь организм в целом.

Кроме того, поскольку организм представляет собой единое целое, результат воздействия продолжается очень долго после его окончания. После лазерной операции реакция организма продолжается в течение дней, недель и даже месяцев.

Такая сложность и комплексность лазерной медицины делает ее очень интересной для исследования и разработки новых технологий.

Почему лазерное излучение нашло такое широкое применение в медицине? Основными особенностями лазерного излучения в применении к лазерной медицине являются:

  • -направленность, монохроматичность, когерентность, определяющие возможность локализации энергии,
  • - широкий спектральный диапазон существующих лазеров (это особенно важно в том случае, когда поглощение носит резонансный характер),
  • - возможность в широких пределах управлять длительностью воздействия (существующие лазеры обеспечивают длительность воздействия от фемтосекундного диапазона до непрерывного воздействия),
  • - возможность плавного изменения в широких пределах интенсивности воздействия,
  • - возможность изменения частотных характеристик воздействия,
  • - широкие возможности оптического управления процессами, в том числе, возможность организации обратной связи,
  • - широкий спектр механизмов воздействия: тепловой, фотохимический, сугубо биофизический, химический,
  • - простота доставки излучения,
  • - возможность бесконтактного воздействия, что обеспечивает стерильность,
  • - возможность проведения бескровных операций, связанная с тепловым и, следовательно, коагуляционным действием излучения.

Таким образом, лазер представляется исключительно точным, универсальным и удобным в использовании инструментом и имеет большой потенциал для медицинских применений в будущем.

Принцип работы лазера

Принципиальную схему работы любого лазерного излучателя можно представить следующим образом (рис. 1).

Рис. 1.

В структуру каждого из них входит цилиндрический стержень с рабочим веществом, на торцах которого расположены зеркала, одно из которых обладает небольшой проницаемостью. В непосредственной близости от цилиндра с рабочим веществом расположена лампа-вспышка, которая может быть параллельна стержню или змеевидно окружать его. Известно, что в нагретых телах, например в лампе накаливания, происходит спонтанное излучение, при котором каждый атом вещества излучает по-своему, и, таким образом, имеются хаотически направленные друг относительно друга потоки световых волн. В лазерном излучателе используется так называемое вынужденное излучение, которое отличается от спонтанного и возникает при атаке возбужденного атома квантом света. Испускаемый при этом фотон по всем электромагнитным характеристикам абсолютно идентичен первичному, атаковавшему возбужденный атом. В результате появляются уже два фотона, обладающие одинаковой длиной волны, частотой, амплитудой, направлением распространения и поляризации. Легко представить, что в активной среде происходит процесс лавинообразного нарастания числа фотонов, по всем параметрам копирующих первичный "затравочный" фотон, и формирующих однонаправленный световой поток. В качестве такой активной среды в лазерном излучателе выступает рабочее вещество, а возбуждение его атомов (накачка лазера) происходит за счет энергии лампы-вспышки. Потоки фотонов, направление распространения которых перпендикулярно плоскости зеркал, отражаясь от их поверхности, многократно проходят сквозь рабочее вещество туда и обратно, вызывая все новые и новые цепные лавинообразные реакции. Поскольку одно из зеркал обладает частичной проницаемостью, часть образующихся фотонов выходит в форме видимого лазерного луча.

Таким образом, отличительной особенностью лазерного излучения является монохроматичность, когерентность и высокая поляризация электромагнитных волн в световом потоке. Монохроматичность характеризуется наличием в спектре источника фотонов преимущественно одной длины волны, когерентность есть синхронизация во времени и пространстве монохроматичных световых волн. Высокая поляризация - закономерное изменение направления и величины вектора излучения в плоскости, перпендикулярной световому лучу. То есть фотоны в лазерном световом потоке обладают не только постоянством длин волн, частот и амплитуды, но и одинаковым направлением распространения и поляризации. В то время как обычный свет состоит из хаотично разлетающихся разнородных частиц. Для сравнения можно сказать, что между светом, испускаемым лазером, и обычной лампой накаливания такая же разница, как между звуком камертона и шумом улицы.

Применение лазеров в стоматологии

В стоматологии лазерное излучение прочно заняло достаточно обширную нишу. На кафедре ортопедической стоматологии БГМУ проводится работа по изучению возможностей применения лазерного излучения, которая охватывает как физиотерапевтические и хирургические аспекты действия лазера на органы и ткани челюстно-лицевой области, так и вопросы технологического применения лазеров на этапах изготовления и ремонта протезов и аппаратов.