Новые летательные аппараты.

Человек давно мечтал научиться летать как птица, и летательные аппараты - именно то, к чему привело его это стремление и научно-технический вектор развития человечества. Летательные аппараты - длинная ветвь эволюции и прогресса, начиная первыми неудачными попытками создать мускулолет (вроде того, с которым оплошал Икар) и заканчивая современными «Боингами», истребителями, бомбардировщиками, космическими аппаратами - всем, что позволяет нам перемещаться, минуя сушу и море. Несмотря на, казалось бы, невообразимо сложные технологии, лежащие в их основе, летательные аппараты по большей части считаются относительно безопасным и быстрым средством передвижения. Особый резонанс вызывают лишь трагедии, уносящие жизни сразу нескольких сотен человек. Впрочем, желание человека - закон, и можно с уверенностью сказать, что он перевыполнил план по повторению подвига пернатых мира сего.

Hybrid Air Vehicles, компания, построившая летательный аппарат Airlander 10 (самый длинный в мире летательный аппарат, известный также как «летающий зад» за свое сходство с задницей), заявила, что ее нынешний прототип перестраиваться не будет, однако она займется созданием нового поколения летающих дирижаблей. HAV уже получила одобрение от Управления гражданской авиации на создание новой серии летательных аппаратов, запланированной на начало 2020-х.

Большинство современных беспилотников имеют такую конструкцию, которая позволяет эффективно двигаться лишь в одном-двух направлениях. К примеру, привычное расположение винтов в верхней части летательного аппарата дает хорошую подъемную силу, но позволяет двигаться лишь в положении, параллельном земле, не давая «переворачиваться», что может быть большой проблемой в условиях сильного ветра. Совсем иной подход используется в беспилотнике Omnicopter, пропеллеры которого расположены таким образом, что аппарат одинаково эффективно может двигаться в любом направлении и, по сути, не имеет ни «верха», ни «низа».

Ещё в древние времена люди мечтали подняться в воздух и научиться летать, подобно птицам. История донесла до нас немало свидетельств попыток различных людей смастерить крылья и полетать. Так, в 1020 г. английский монах Эйлмер из Малмсбери, вдохновлённый греческим мифом об Икаре, сделал искусственные крылья и спрыгнул с башни местного аббатства. Пролетев небольшое расстояние, при приземлении монах сломал ноги и хотел, усовершенствовав конструкцию и добавив хвост, повторить полёт, но аббат запретил ему это. Большинство же «изобретателей» заканчивали куда хуже — разбивались насмерть. И всё же — какова история летательных аппаратов и когда появились первые удачные приспособления, позволявшие людям подняться в воздух?

Начинается история полётов в древнем Китае. Ещё в 3-4 веках до н. э. китайцы изобрели воздушный змей. Изначально это приспособление использовалось для развлечения народа на всяких праздниках.

китайский воздушный змей в форме дракона

Однако вскоре воздушным змеям нашли и другое применение. Например, рыбаки стали использовать воздушных змеев для ловли рыбы, привязывая к ним приманку, воздушные змеи применялись для обмена сигналами на больших расстояниях, с их помощью даже доставляли сообщения и разбрасывали листовки. Конечно же, китайцев посетила и мысль, что большой воздушный змей может поднять в воздух и человека. Полёт на воздушном змее был довольно рискованным, однако история сохранила свидетельства удачных полётов. Первое дошедшее до нас письменное упоминание о таком полёте относится к 559 году. В этом году жестокий император Ци Вэньсюаньди приказал запускать на больших воздушных змеях своих политических оппонентов, осуждённых на казнь. Одному из них удалось пролететь несколько километров и благополучно приземлиться за чертой города.

Удивительно, что прошли тысячи лет, прежде чем полёты на дельтапланах, т. е., фактически таких же простых летательных аппаратах без двигателя, как и китайский воздушный змей, стали популярными и получили распространение. Одним из энтузиастов таких полётов стал Отто Лилиенталь, совершивший конце 19 в. более 2000 успешных полётов на планерах собственной конструкции. Он использовал те же материалы, что и китайцы — деревянные прутья и шёлк.

фото — полёты Лилиенталя

К сожалению, один из полётов закончился несчастным случаем — порыв ветра опрокинул планер и Лилиенталь упал, сломав позвоночник. «Жертвы неизбежны» — сказал он по этому поводу. А современная история дельтапланеризма началась лишь в 70-е годы 20 в. Датой рождения современного дельтаплана считается 1971 год.

До появления самолётов и вертолётов самым простым способом совершить полёт было использование летательных аппаратов легче воздуха — воздушных шаров и дирижаблей. Что интересно, история здесь снова ведёт нас в Китай. Вероятно, ещё в 3м в. до н. э. в Китае были изобретены воздушные фонарики. Этот фонарик — простая конструкция из рисовой бумаги с небольшой горелкой внутри.

китайские воздушные фонарики

Китайцы использовали воздушные фонарики в церемониях и как средство сигнализации. Прошли тысячи лет, прежде чем на воздушных шарах начали летать люди.

Изобретателями воздушного шара считаются братья Монгольфье из Франции. Руководствовались братья не совсем правильными идеями — им пришла в голову мысль сделать аналог облака и поместить его в мешок, чтобы оно могло поднять этот мешок в воздух. С этой целью они наполняли свои шары дымом от сожжения смеси соломы и мокрой шерсти. Тем не менее, их подход привёл к успеху. Сначала браться проводили эксперименты с небольшими шарами у себя дома, а затем устроили большую демонстрацию воздушного шара для жителей своего города Анноне. Это произошло 4 июня 1783 года. Вскоре о воздушном шаре узнали в Париже, и осенью того же года братья Монгольфье запускали свои шары уже в Версале. Впервые на воздушном шаре решили запустить пассажиров — ими стали овца, утка и петух. Наконец, убедившись, что полёт на воздушном шаре не повредит человеку, 19 октября 1783 года первый полёт на воздушном шаре совершили люди.

первый полёт на воздушном шаре

Воздушные шары имели существенный недостаток — их полёт зависел от направления ветра, поэтому в течение 19 в. не прекращались попытки создать управляемый летательный аппарат с двигателем. Пробовали как варианты с установкой двигателя на воздушный шар, так и с установкой двигателя на планер. Но несмотря на то, что идея управляемого полёта была высказана вскоре после полёта первого воздушного шара, прошло больше ста лет, прежде чем управляемый полёт стал реальностью. Лишь в 1884 году французы Шарль Ренар и Артур Кребс смогли построить дирижабль, способный свободно перемещаться в любом направлении. Их дирижабль имел удлинённую форму и был оснащён электрическим двигателем, работавшим на аккумуляторах.

дирижабль Ренара и Кребса

Попытки поставить двигатель на планер и изобрести, таким образом, самолёт, долгое время не приводили к особым успехам. Среди таких попыток был, например, самолёт Можайского. Можайский, контр-адмирал российского флота, стал изобретать самолёт ещё в 50-е годы 19 в. Начав с планеров, которые поднимали в воздух запряжённые лошади, Можайский перешёл к конструированию самолёта с двигателем. К сожалению, паровые двигатели, которыми он пробовал оснастить самолёт, были слишком тяжёлыми, и удержать его в воздухе не могли, хотя и имеются свидетельства, что самолёт Можайского был способен взлетать на короткое время.

самолёт Можайского (модель)

Можайский потратил на изобретательскую деятельность все свои деньги, продал имение и в конце концов умер от болезни в нищете. Тогдашние российские чиновники не заинтересовались идеями Можайского и не стали финансировать его работу, в результате общепризнанными изобретателями самолёта стали американцы братья Райт. Они совершили свой первый подтверждённый полёт в 1903 году, через 13 лет после смерти Можайского.

Первый документально зафиксированный полёт самолёта конструкции братьев Райт состоялся 17 декабря 1903 года. При этом самолёт запускался с помощью рельсовой катапульты, а расстояние, которое он пролетел, составило всего 30 метров.

первый полёт самолёта братьев Райт

Братья Райт изобрели не только сам самолёт, но и лёгкий бензиновый двигатель для него, что и стало настоящим прорывом в самолётостроении. Тем не менее от первого полёта до активного развития авиации прошло время. В следующем году братья Райт в присутствии журналистов не смогли повторить свой успех, самолёт отправился в ангар, а изобретатели занялись конструированием новой, более совершенной модели. Военное ведомство США не спешило заключать контракт с братьями Райт, сомневаясь в способности велосипедных механиков (именно такая специальность была у изобретателей) сконструировать что-то стоящее. В Европе же сообщения о полётах братьев Райт и вообще считали враньём. Лишь в 1908 г. после впечатляющих демонстрационных полётов, проведённых изобретателями как в США, так и в Европе, мнение изменилось, а братья Райт стали не только знаменитыми, но и богатыми.

В 1909 г. российское правительство, наконец, осознало важность изобретений в области авиации. Оно отказалось покупать самолёт братьев Райт и приняло решение создать собственный самолёт самостоятельно. Первый российский аэроплан построил и в 1910 году совершил на нём полёт профессор Александр Кудашев.

В 1965 мировую известность получила песня про «Воздушные приключения» из комедии о вымышленном конкурсе авиации 1910 по полетам из Лондона в Париж.

Первые изобретатели и летчики, мечтавшие, чтобы люди могли свободно летать, сделали много роковых ошибок, но их настойчивость и вера привели к созданию современных авиационных и аэрокосмических технологий, открывших небо для как гражданских лиц, так и военных.

Первые восемь летательных аппаратов, на самом деле, даже не могли оторваться от земли или находились в небе считанные минуты. Прорыв в авиации сделала французская «Маркиза» 1908 года.

1. Древние летательные аппараты Китая - воздушные змеи, 500 г. до н.э.

Воздушный змей, Китай. 500 до н.э.

В Китае использовались такие древние летательные аппараты как кайты. Они предназначалась для военного наблюдения, а также для поиска странствующих солдат и беглых заключенных. Китайский генерал Кунг Шу-Пан, современник Конфуция, жившего в 6-5 веках до н.э., «совершил восхождение на гору с деревянным змеем для того, чтобы осмотреть город, который планировал захватить». Конструкция змея в древности позволяла ему парить в воздухе три ночи и три дня.

В 1282 венецианский путешественник Марко Поло написал, что видел в морском порту, как власти привязывают на ремень к воздушному змею невольников. Так они определяют направление ветра и лучшее время для установки судами парусов.

Змеи использовались в военных целях вплоть до изобретения воздушных шаров и дирижаблей.

Сюмюэль Франклин Коди, основатель авиации Дикого Запада, устраивал аттракционы с подъемами на мощных воздушных змеях. Несколько человек на устройство в виде большой летучей мыши с крыльями и подкрепленной коробкой для пассажиров, запускались в небо и парили над землей на высоте несколько сотен метров.

Змеи использовались также Великобританией во время англо-бурской войны в Южной Африке в 1890-х годах. Военные использовали кайты, разработанные Коди в 1906, пока их не заменили на воздушные шары и летательные аппараты во время Первой мировой войны.

2. Летающий змей Бураттини, 1647


Летающий змей Бураттини

Итальянский изобретатель и ученый Тито Бураттини продемонстрирован модель летающего планера, названного «Дракон Волант» при дворе короля Польши в Варшаве в 1647. Из сохранившихся описаний и рисунков устройства видно, что оно было изготовлено из ткани и бумаги, натянутых через деревянный каркас. Четыре машущих крыла управлялись пружинами.

В 1648 Бураттини запустила Dragon Volant еще раз, на этот раз с кошкой на борту. Это был первый эксперимент, использованный американскими астронавтами и в российских космическимх программах 20 века по отправке в воздушное пространство животных.

Бураттини не удалось убедить царя в необходимости финансирования полномасштабной версии летательного аппарата. Изобретатель был уверен, что «только временные трудности» не позволили его механическому дракону полноценно оторваться от земли.

Несколько изобретателей задумались об идее создания парашюта еще задолго до Леонардо да Винчи. В 15 веке он сконструировал пирамидальной формы парашют и рассказал, что это устройство позволит человеку спрыгнуть с высоты и не получить каких-либо травм.

3. Парашют Фауста Вранчичи, 1595

Первый парашют

В 1595 хорватский изобретатель Фауст Вранчич опубликовал проект Homo Volance или «летающий человек». Им был создан парашют на основе конструкции паруса корабля с материалом, натянутым на квадратной деревянной раме и подкрепленным веревками.

Истории известны и другие безумные эксперименты с полетами. 26 декабря 1783 французский изобретатель и ученый Луи Себастьен Ленорман сделал парашют, похожий на современный. Ему удалось успешно приземлиться после прыжка из башни обсерватории Монпелье.

Ленорман считал, что его изобретение может использоваться в чрезвычайных ситуациях, что позволит избежать бесконтрольного падения людей с верхних этажей зданий в случае пожара. Он благополучно достиг земли, спустившихся с высоты 25 м с использованием парашюта длиной 4,3 м с деревянным каркасом из спиц. Устройство выглядело как зонтик, покрытый шелком.

Перед обсерваторией была продемонстрирована работа воздухоплавателя Джозефа Монгольеье, который совершил первый пилотируемый полет на воздушном шаре с своим братом Этьеном за несколько месяцев до этого случая в том же году.

4. Дирижабль Соломона Эндрюса, 1862


Дирижабль

Первый американский дирижабль Соломона Эндрюса впервые поднялся в воздух над Рент Амбой в Нью-Джерси в 1862. Через четыре года в 1866 он пролетел над Нью-Йорком в Ойстер Бэй. Эндрюс написал президенту Аврааму Линкольну о возможности использования Аэрона в военных целях. Правительство проявило большой интерес к этой идее.

В устройстве не было двигателей, использовались крыловидные соединения и рулевое управление лопатками для контроля высоты, скорости и направления полета. Изобретатель пояснил, что летательный аппарат «скользил под воздействием силы тяжести».

Идеи Эндрюса вдохновили позже на создание дирижабля. Согласно его конструкции изготовлен Airlander Hybrid Air Vehicle.

5. Пилотируемый планер Жана Мори Ле Бри, 1856


L’Albatros Artificiel

Французский изобретатель Жан-Мари Ле Бри был настолько вдохновлен, что построил изящный пилотируемый планер. Он изучал анатомию птиц и феномен подъемной силы, создаваемой крыльями. Надеясь взлететь, Ле Бри построил летательный аппарат L’Albatros Artificiel.

В 1856 Ле Бри успешно пролетел на его «Искусственном Албатросе» через пляж Сент-Анн-Ла-Палуд рядом с крайней восточной точкой Франции. Самолет буксировался при помощи запряженной в тележку лошади, что позволяло развить скорость 100 км/час. Аппарат пролетел 200 м и достиг рекорда высоты.

В 1868 Ле Бри экспериментировал, соорудив крылья к планеру, - принцип, используемый в конструкциях современных летательных аппаратаов. В Бресте были сделаны первые фотографии устройства.

6. Вертолет Томаса Моу, 1875


Aerial Steamer

В 1875 году Томас Моу успешно взлетел на Aerial Steamer, приведенным в действие паровым двигателем в 3 л.с., управляемым большими двойными пропеллерами. Самолет весил почти 100 кг и смог оторваться от земли всего на 15 см.

7. Вертолет Поля Корню

Французский пионер авиации Поль Корню совершил первый полет свободный полет 9 ноября 1907 г. Примитивный вертолет с двумя моторами позволил подняться ввысь, мотор с 24 лошадинными силами был зажат между колен пилота.


Древние летательные аппараты изготавливались еще в Египте. В модели птиц были заложены основные технические требования к аэродинамике современной авиации, выяснили ученые.

Летательные аппараты древних цивилизаций видео:

Человечество стремилось ввысь на протяжении столетий и тысячелетий, о попытках людей преодолеть земное тяготение сложены легенды, мифы, предания и сказки. Древние боги могли перемещаться в воздухе на своих колесницах, кому-то не требовались даже они. К самым известным «небесным пилотам» можно отнести Икара, а также Деда Мороза (он же Санта-Клаус).

Более реальные для истории примеры - Леонардо да Винчи, братья Монгольфье и другие инженеры, а также увлеченные своими идеями энтузиасты, такие как, например, американские братья Райт. С последних началась современная эпоха самолетостроения, именно они вывели некоторые фундаментальные основы, которые применяются до сих пор.

Как и в случае с автомобилями, эффективность летательных аппаратов со временем росла, и конструкторы получали больше возможностей для создания каких-то новых, часто революционных средств передвижения по воздуху. При достаточном финансировании и поддержке со стороны власть имущих (чаще - военных) удавалось воплотить в жизнь самые необычные проекты. Нередко это были неприспособленные к жизни устройства, которые могли летать лишь на бумаге. Другие все же отрывались от земли, но их производство оказывалось слишком дорогим. Существовали также иные ограничения, в том числе технического характера.

Мы решили перечислить некоторые как позабытые, так и перспективные летательные аппараты для персонального использования. Это не самолеты для перевозки большого количества пассажиров или объемных грузов, а индивидуальные средства передвижения, привлекающие своей необычностью и теоретически способные упростить жизнь человеку будущего.

HZ-1 Aerocycle (YHO-2) Персональный вертолет, разработанный компанией de Lackner Helicopters в середине 1950-х годов. Заказчиком аппарата выступали американские военные, которые намеревались обеспечить своих солдат удобным средством передвижения. «Аэроцикл» представлял собой платформу, снизу к которой крепились два вращающихся в разных направлениях винта (длина каждой лопасти - более 4,5 метра). В действие их приводил 4-цилиндровый двигатель мощностью 43 лошадиные силы, максимальная скорость полета агрегата - до 110 км/ч.

Испытаниями YHO-2 занимался профессиональный летчик Селмер Сандби, ставший добровольцем в этом деле. Наиболее продолжительный его полет длился 43 минуты, другие заканчивались через несколько секунд после взлета. Не обошлось и без инцидентов: несколько раз лопасти двух винтов соприкасались, что приводило к их деформации, а также потере контроля над аппаратом.
Предполагалось, что управлять YHO-2 сможет любой после 20-минутного инструктажа, однако Сандби сомневался в этом. Опасность несли огромные лопасти, которые могли напугать человека, даже несмотря на то, что положение пилота фиксировалось ремнями безопасности. Инженеры так и не смогли решить проблему с винтами, и в итоге проект был закрыт. Из 12 заказанных персональных вертолетов целым остался один - он выставлен в одном из американских музеев. Кстати, Селмер Сандби получил за свою службу и участие в испытаниях YHO-2 «Крест летных заслуг».
Реактивный ранец.

В 1950-х годах велась разработка еще одного перспективного индивидуального транспортного средства - реактивного ранца. Эта идея, фигурировавшая в научной фантастике еще в 1920-е, впоследствии нашла воплощение в комиксах и фильмах (например, «Ракетчик» 1991 года), однако до этого инженеры и конструкторы потратили немало сил на реализацию идеи сделать человека-ракету. Попытки не прекращаются до сих пор, но уровень развития технологий все еще не позволяет преодолеть некоторые ограничения. В частности, о длительном полете речи пока не идет, управляемость также оставляет желать лучшего. Имеются и вопросы касательно безопасности пилота.
«Первопроходец» среди ракетных ранцев отличался невероятной «прожорливостью»: на полет длительностью до 30 секунд требовалось 19 литров перекиси водорода (пероксида водорода). Пилот мог эффектно подпрыгнуть в воздух или пролететь сотню метров, однако на этом все достоинства аппарата заканчивались. Для обслуживания единственного ранца требовалась целая бригада специалистов, скорость его передвижения была относительно невысока, а для увеличения дальности полета был нужен бак, удержать который пилот бы не смог.
Военные, которые видели в весьма дорогостоящем проекте перспективу создания космических пехотинцев или летающего спецназа, оказались разочарованы.
Впоследствии появилась модернизированная версия аппарата - RB 2000 Rocket Belt. Ее разработку вели трое американцев: продавец страховок и предприниматель Брэд Баркер, бизнесмен Джо Райт и инженер Ларри Стенли. К сожалению, группа распалась: Стенли обвинил Баркера в растратах и последний скрылся вместе с образцом RB 2000. Позже последовал суд, однако Баркер отказался выплачивать $10 млн. Стенли схватил бывшего партнера и посадил его на восемь дней в ящик, за что в 2002 году после бегства страхового агента получил пожизненный срок (его сократили до восьми лет). После всех этих перипетий RB 2000 так и не был найден.
Avro Canada VZ-9 Avrocar.
В конце 1940-х произошел так называемый Розуэлльский инцидент, который, вероятно, и оказал влияние на умы канадских инженеров. Они приняли участие в разработке летательного аппарата вертикального взлета и посадки Avro Canada VZ-9 Avrocar. При взгляде на него на ум сразу приходит аналогия именно с летающими тарелками. На экспериментальный проект было потрачено как минимум три года и $10 млн. Всего было построено два экземпляра высокотехнологичного «пончика» с турбиной посередине.

Предполагалось, что Avrocar, использующий эффект Коанда (с 2012 года его эксплуатируют в Формуле-1), будет способен развивать высокую скорость. Будучи маневренным и имея достойную дальность полета, он в итоге превратится в «летающий джип». Диаметр «тарелки» с двумя кокпитами для пилотов составлял 5,5 метра, высота - менее метра, вес - 2,5 тонны. Максимальная скорость полета Avrocar, согласно замыслу конструкторов, должна была достигать 480 км/ч, высота полета - более 3 тыс. метров.

Второй по счету полноценный прототип не оправдал надежд его создателей: он смог разогнаться лишь до невпечатляющих 56 км/ч. Кроме того, аппарат вел себя в воздухе непредсказуемо, и об эффективном полете речи не шло. Также инженеры выяснили, что поднять Avrocar в воздух на сколь-нибудь значимую высоту не получится, а существующий образец рисковал застрять в высокой траве или мелком кустарнике.
Веловертолет AeroVelo Atlas
В прошлом году двое канадских инженеров получили премию Сикорского, учрежденную в 1980-м. Изначально ее размер составлял $10 тыс. В 2009-м выплаты увеличились до $250 тыс. Согласно правилам конкурса, летательный аппарат на мускульной тяге должен был подняться в воздух на высоту не менее трех метров, имея при этом хорошую устойчивость и управляемость.

Создатели AeroVelo Atlas смогли выполнить все поставленные задачи, представив по-своему футуристичное средство передвижения, достойное покорять небо планеты с низкой гравитацией. Несмотря на свои огромные размеры (ширина веловертолета составила 58 метров, а вес - всего 52 кг), достойный продолжатель идей да Винчи взлетел и даже в некотором смысле превзошел «конкурента» в лице Avrocar: высота его полета составила 3,3 метра, длительность - более минуты.

В пиковый момент пилот «Атласа» смог создать тягу в 1,5 лошадиной силы, которая потребовалась для достижения заданной высоты. Под конец полета тяга составила 0,8 лошадиной силы - педали крутил подготовленный спортсмен, профессиональный велосипедист.
Веловертолет заслуживает внимания как доказательство того, что при желании можно обойти многие препятствия и заставить летать даже то, что и в состоянии покоя не внушает доверия. Ховербайк Криса Мэллоя.
Кто-то вдохновляется историями об НЛО, а Крис Мэллой, вероятно, является поклонником «Звездных войн». Пока, к сожалению, это лишь идея, воплощенная частично: австралиец продолжает собирать средства на выпуск полностью рабочего прототипа летательного аппарата. Для этого ему потребуется $1,1 млн, а пока в продаже есть миниатюрные версии ховербайка: это дроны, за счет продаж которых Мэллой намерен частично профинансировать постройку своего детища.



Инженер считает, что его летательный аппарат лучше, чем существующие вертолеты (именно с ними он сравнивает ховербайк). Агрегат не требует продвинутых знаний в области пилотирования, так как основные задачи будет выполнять компьютер. Кроме того, устройство легче и дешевле.
Планируется, что аппарат оснастят баком на 30 литров топлива (60 литров - с дополнительными емкостями), расход составит 30 литров в час, или 0,5 литра в минуту. Ширина ховербайка достигает 1,3 метра, длина - 3 метра, чистый вес - 105 кг, максимальная взлетная масса - 270 кг. Агрегат сможет взлетать на высоту почти 3 км, а его скорость будет составлять более 250 км/ч. Звучит все это многообещающе, но пока малоправдоподобно.
Jetlev.
Полностью рабочий прототип аналога ракетного ранца на водной тяге был завершен в 2008 году. По словам его создателей, первый набросок будущего аппарата появился за восемь лет до этого. Промо, демонстрирующее возможности Jetlev, было размещено на YouTube в 2009 году, тогда же компания-разработчик объявила и стоимость первой массовой версии устройства - $139,5 тыс. С течением времени ранец на водной тяге заметно убавил в цене, которая снизилась для модели R200x до $68,5 тыс. Это стало возможно благодаря появившейся конкуренции.
В нашем списке это первый летательный аппарат, который действительно существует, работает и имеет определенную популярность. Он «привязан» к воде, однако это не умаляет его достоинств: максимальная скорость полета актуальной модели составляет 40 км/ч, высота - около 40 метров. При наличии достаточно протяженной реки пилот Jetlev смог бы преодолеть почти 50 км (другой вопрос - существует ли человек, способный выдержать такой путь).
Разработка не претендует на звание «серьезного» средства передвижения, однако даст почувствовать себя Джеймсом Бондом, в распоряжении которого оказался новый гаджет из исследовательского центра Британской секретной службы.
M400 Skycar.
Один из самых неоднозначных проектов, который в итоге может быть не реализован. Созданием летающего автомобиля уже не первое десятилетие занимается дизайнер Пол Моллер. В последние годы ему все сложнее привлекать внимание к своим так и не взлетевшим транспортным средствам. За все время изобретатель не смог добиться значимых и видимых результатов, но как минимум с 1997 года регулярно привлекает к себе внимание финансовых служб и контролирующих органов.
Вначале Моллера уличили в выпуске маркетинговых материалов, в которых он сообщал о том, что его автомобили будущего заполнят воздушное пространство в течение нескольких лет. Затем сомнения вызвали операции с ценными бумагами и возможный обман инвесторов, в результате чего желающих вкладывать деньги в бездонный проект становилось все меньше. Последнюю попытку канадец предпринял в конце 2013 года, но к январю 2014-го собрал менее $30 тыс. из требуемых $950 тыс.

Если верить дизайнеру, в настоящее время идет разработка модели M400X Skycar. Автомобиль, предназначенный для перевозки одного человека (водителя), на бумаге способен развивать скорость до 530 км/ч и взлетать на высоту 10 тыс. метров. В реальности же идея, скорее всего, так и останется идеей, а работа всей жизни Пола Моллера, которому в этом году исполнится 78 лет, завершится ничем.
Летающий мотоцикл G2.
В перспективе он обязательно полетит - об этом свидетельствуют испытания первой модели, проведенные в 2005-2006 годах. Пока же аппарат, который успел завоевать звание «самого быстрого в мире летающего мотоцикла», подойдет Безумному Максу, Бэтмену или Агенту 007. Благодаря двигателю от Suzuki GSX-R1000, транспортное средство способно развивать скорость более 200 км/ч, что доказано во время заездов по соляной пустыне в США. Способность покорять небо, по словам разработчика, летающий мотоцикл получит в ближайшие месяцы.

В качестве основы для летательного аппарата изобретатель не зря выбрал именно байк: по американскому законодательству его будет значительно легче зарегистрировать и использовать на дорогах.
Сейчас Дежё Молнар работает над тем, чтобы снизить вес G2 и приспособить двигатель, приводящий мотоцикл в движение, для взаимодействия с винтом. Именно тогда инженер и опубликует видео, на котором продемонстрирует все возможности создаваемого им транспортного средства.

Здравствуйте!

Сразу хочу сказать, что поверить в это сложно, почти невозможно во всём виноват стереотип, но попытаюсь изложить это понятно и аргументировать конкретными испытаниями.

Моя статья предназначается для людей, связанных, с авиацией или тем кому интересна авиация.

В 2000 году, возникла идея, траектория движения механической лопасти по окружности с разворотом на своей оси. Как изображено на Рис.1.

И так представим, лопасть (1), (плоская прямоугольная пластина, вид сбоку) вращаясь по окружности (3) разворачивается на своей оси (2) в определённой зависимости, на 2 градуса вращения по окружности, 1 градус разворота на своей оси (2). В результате мы имеем изображенную на Рис.1 траекторию движения лопасти (1). А теперь представим, что лопасть находится в текучей среде, в воздухе или воде, при таком движении происходит следующее, двигаясь в одну сторону (5) по окружности, лопасть имеет максимальное сопротивление текучей среде, а двигаясь в другую сторону (4) по окружности, имеет минимальное сопротивление текучей среде.

Это и есть принцип работы движителя, осталось изобрести механизм исполняющий траекторию движения лопасти. Этим я и занимался с 2000 по 2013 год. Механизм назвал ВРК, расшифровывается как вращающееся разворачивающееся крыло. В данном описании крыло, лопасть, и пластина имеют одинаковое значение.

Создал свою мастерскую и начал творить, варианты пробовал разные, приблизительно в 2004-2005 получил следующий результат.


Рис. 2


Рис. 3

Сделал тренажёр для проверки подъёмной силы ВРК Рис.2. ВРК выполнен трёх лопастным, лопасти по внутреннему периметру имеют натянутую красную плащевую ткань, смысл тренажера преодолеть силу тяжести в 4 кг. Рис.3. Безмен я крепил к валу ВРК. Результат Рис.4:


Рис. 4

Тренажёр с легкостью поднял этот груз, был репортаж по местному телевидению ГТРК Бира, это кадры из этого репортажа. Потом добавил скорость и отрегулировал на 7 кг., тренажер поднял и этот груз, после этого попытался добавить ещё скорость, но механизм не выдержал. Поэтому судить об эксперименте могу по этому результату, хотя он и не окончательный, а в цифрах это выглядит так:

На клипе изображен тренажёр для испытания подъёмной силы ВРК. На ножках, шарнирно закреплена горизонтальная конструкция, с одной стороны установлено ВРК с другой привод. Привод – эл. двигатель 0,75кВт, КПД эл. двигателя 0,75% то есть фактически двигатель выдаёт 0,75*0,75=0,5625КВт, нам известно что 1л.с=0,7355кВт.

Перед включением тренажера я безменом взвешиваю вал ВРК, вес составляет 4кг. Это видно из клипа, после репортажа я изменил передаточное число, добавил скорость и добавил вес, в итоге тренажер поднял 7 килограмм, после при увеличении веса и оборотов, он не выдержал. Вернёмся к расчётам по факту, если 0,5625кВт поднимает 7 кг то 1л.с=0,7355кВт поднимет 0,7355кВт/0,5625КВт=1,3 и 7*1,3=9,1кг.

Движитель ВРК при испытании показал вертикальную подъёмную силу 9,1кг/на одну лошадиную силу. К примеру у вертолёта подъёмная сила в два раза меньше. (сравниваю технические характеристики вертолётов, где максимальная взлётная масса на мощность двигателя составляет 3,5-4 кг./на 1л.с., у самолёта она составляет 8 кг./на 1 л.с.). Хочу заметить, что это не окончательный результат, для испытаний, ВРК необходимо сделать в заводских условиях и на стенде с точными приборами, определить подъёмную силу.

Движитель ВРК, имеет техническую возможность, изменять направление движущей силы на 360 градусов, это позволяет осуществлять вертикальный взлёт и переходить на движение по горизонтали. В этой статье я не останавливаюсь на этом вопросе, это изложено в моих патентах.

Получил 2 патента за ВРК Рис.5, Рис.6, но сегодня они не действуют за неуплату. Но всей информации для создания ВРК в патентах нет.


Рис. 5


Рис. 6

Теперь самое сложное, у всех сложился стереотип о существующих летательных аппаратах, это самолёт и вертолёт (я не беру примеры на реактивной тяге или ракеты).

ВРК – обладая преимуществом перед винтом такими как, более высокая движущая сила и изменением направления движения на 360 градусов, позволяет создавать совершенно новые летательные аппараты различного назначения, которые будут вертикально взлетать с любой площадки и плавно переходить в горизонтальное движение.

По сложности производства, летательные аппараты с ВРК не сложнее автомобиля, назначение летательных аппаратов может быть самое различное:

  • Индивидуальные, надел на спину, и полетел как птица;
  • Семейный вид транспорта, на 4-5 чел, Рис.7;
  • Муниципальный транспорт: скорая помощь, полиция, администрация, пожарная, МЧС и т.п., Рис.7;
  • Аэробусы для периферийного, и междугороднего сообщения, Рис.8;
  • Летательный аппарат, взлетающий вертикально на ВРК, переходящие на реактивные двигатели, Рис. 9;
  • И любые летательные аппараты для всевозможных задач.


Рис. 7


Рис. 8


Рис. 9

Вид у них и принцип полёта, сложен к восприятию. Кроме летательных аппаратов ВРК может быть использован как движитель для плавательных аппаратов, но этой темы мы здесь не касаемся.

ВРК это целое направление, с которым мне одному не справиться, хочется надеяться что это направление потребуется в России.

Получив результат 2004-2005 году, я был окрылён и надеялся, что быстро донесу свои мысли до специалистов, но пока этого не случилось, все годы делал новые варианты ВРК, применял разные кинематические схемы, но результат испытаний был отрицательным. В 2011 году, повторил вариант 2004-2005 года, эл. двигатель включил через инвертор, этим обеспечил плавный пуск ВРК, правда, механизм ВРК выполнил из доступных мне материалов по упрощённому варианту, поэтому максимальную нагрузку дать не могу, отрегулировал на 2 кг.

Медленно поднимаю обороты эл. двигателя, в результате ВРК показывает бесшумный плавный взлёт.

Полный клип последнего испытания:

На этой оптимистичной ноте прощаюсь с Вами.

С уважением, Кохочев Анатолий Алексеевич.