Использование двигателя переменного трехфазного тока как генератор. Делаем генератор из асинхронного электродвигателя своими силами в домашних условиях

Не всегда местные электросети способны полноценно обеспечивать электричеством дома, особенно, если это касается загородных дач и особняков. Перебои с постоянным электроснабжением или же его полное отсутствие заставляет искать получения электричества. Одним из таких является использование – прибора, способного преобразовывать и накапливать электричество , используя для этого самые необычные ресурсы (энергия , приливов и отливов). Его принцип работы достаточно простой, что делает возможным сделать электрогенератор своими руками. Возможно, самодельная модель не сможет конкурировать с аналогом заводской сборки, однако это отличный способ сэкономить более 10 000 рублей. Если рассматривать самодельный электрогенератор в качестве временного альтернативного источника электроснабжения, то вполне можно обойтись и самоделкой.

Как сделать электрогенератор, что для этого потребуется, а также какие нюансы придется учитывать, узнаем далее.

Желание иметь в своем пользовании электрогенератор омрачается одной неприятностью – это высокая стоимость агрегата . Как ни крути, но самые маломощные модели имеют достаточно заоблачную стоимость – от 15 000 рублей и выше. Именно этот факт наталкивает на мысль о собственноручном создании генератора. Однако, сам процесс может быть затруднительным , если:

  • нет навыка в работе с инструментом и схемами;
  • нет опыта в создании подобных приборов;
  • не имеется в наличии необходимых деталей и запчастей.

Если же все это и огромное желание присутствуют, то можно попробовать собрать генератор , руководствуясь указаниями по сборке и приложенной схемой.

Не секрет, что покупной электрогенератор будет обладать более расширенным перечнем возможностей и функций, в то время как самоделка способна подводить и давать сбои в самые неподходящие моменты. Поэтому, покупать или делать своими руками – вопрос сугубо индивидуальный, требующий ответственного подхода.

Как работает электрогенератор

Принцип работы электрогенератора основывается на физическом явлении электромагнитной индукции. Проводник, проходящий через искусственно созданное электромагнитное поле, создает импульс, который преобразуется в постоянный ток.

Генератор имеет двигатель, который способен вырабатывать электричество, сжигая в своих отсеках определенный вид топлива: , или . В свою очередь топливо, попадая в камеру сжигания, в процессе горения вырабатывает газ, который вращает коленчатый вал. Последний передает импульс ведомому валу, который уже способен предоставить определенное количество энергии на выходе.

В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.

Переделка заключается в проточке ротора под магниты, далее магниты обычно по шаблону приклеивают к ротору и заливают эпоксидной смолой чтобы не отлетели. Так-же обычно перематывают статор более толстым проводом чтобы уменьшить слишком большое напряжение и поднять силу тока. Но этот двигатель не хотелось перематывать и было решено оставить все как есть, только переделать ротор на магниты. В качестве донора был найден трехфазный асинхронный двигатель мощностью 1,32Кв. Ниже фото данного электродвигателя.

асинхронный двигатель переделка в генератор Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор. В этой конструкции применены достаточно сильные магниты размером 7,6*6мм в количестве 160 шт., которые и без гильзы обеспечат хорошую ЭДС.



Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно "север", второй полюс "юг". Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.

После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой. После заливки залипание несколько снизилось и было замечено что немного упало напряжение при вращении генератора на одних и тех же оборотах и немного подрос ток.


После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.


В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.


После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.


Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.


Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку. Зарядка была достаточно хорошим током, аккумулятор быстро зашумел, как будто его заряжают от зарядного устройства.

Данные на шиндике электродвигателя говорили 220/380 вольт 6,2/3,6 А.значит сопротивление генератора 35,4Ом треугольник/105,5 Ом звезда. Если он заряжал 12-ти вольтовый аккумулятор по схеме включения фаз генератора в треугольник, что скорее всего, то 80-12/35,4=1,9А. Получается при ветре 8-9 м/с ток зарядки был примерно 1,9 А, а это всего 23 ватт/ч, да немного, но может я где-то ошибся.

Такие большие потери из-за высокого сопротивления генератора, поэтому статор обычно перематывают более толстым проводом чтобы уменьшить сопротивление генератора, которое влияет на силу тока, и чем выше сопротивление обмотки генератора, тем меньше сила тока и выше напряжение.

Для того чтобы асинхронный двигатель стал генератором переменного тока надо чтобы внутри него образовывалось магнитное поле, это можно сделать путём размещения на роторе двигателя постоянных магнитов. Вся переделка и простая и сложная одновременно.

Сначало надо подобрать подходящий двигатель, который наиболее подойдёт для работы в качестве низкооборотистого генератора. Это многополюсные асинхронные двигатели, хорошо подходят 6-ти и 8-ми полюсные, низкооборотистые двигатели, с максимальными оборотами в режиме двигателя не более 1350об/м. Такие двигатели имеют наибольшее количество полюсов и зубцов на статоре.

Далее нужно разобрать двигатель и извлечь якорь-ротор, который надо сточить на станке до опредлённых размеров под наклеивание магнитов. Магниты неодимые, обычно клеят маленькие круглые магнитики. Сейчас я попробую расказать как и сколько магнитов клеить.

Для начала нужно узнать сколько у вашего мотора полюсов, но по обмотке это понять достаточно трудно без соответствующего опыта, поэтому количество полюсов лучше прочитать на маркировке двигателя, если она конечно имеется, хотя в большенстве случаев она имеется. Ниже приведён пример маркировки двигателя и расшифровка маркировки.

По марке двигателя. Для 3х фазных: Тип двигателя Мощность, кВт Напряжение, В Частота вращения, (синх.), об/мин КПД, % Масса, кг

Например: ДАФ3 400-6-10 УХЛ1 400 6000 600 93,7 4580 Расшифровка обозначения двигателя: Д - двигатель; А - асинхронный; Ф - с фазным ротором; 3 - закрытое исполнение; 400 - мощность, кВт; б - напряжение, кВ; 10 - число полюсов; УХЛ - климатическое исполнение; 1 - категория размещения.

Бывает так, что двигатели не нашего производства как на фото выше, и маркировка непонятна, или маркировка просто не читаема. Тогда остаётся один метод, это посчитать сколько у вас зубцов на статоре и сколько зубцов занимает одна катушка. Если наприер катушка занимает 4 зубца, а их всего 24, то ваш мотор шестиполюсной.

Количество полюсов статора нужно знать для того, чтобы определиться с количеством полюсов при наклейке магнитов на ротор. Это количество обычно равное, то-есть если полюсов статора 6, то и магниты надо клееть с чередованием полюсов в количестве 6, SNSNSN.

Теперь, когда число полюсов известно надо рассчитать число магнитов для ротора. Для этого надо выссчитать длинну оружности ротора, по простой формуле 2nR где n=3,14. Тоесть 3,14 умножаем на 2 и на радис ротора, получается длинна окружности. Длее замеряем свой ротор по длинне железа, которое в алюминиевой оправке. После можно нарисовать полученную полосу с длинной и шириной, можно на компьютере и потом распечатать.

Терерь нужно определится с толщиной магнитов, она примерно равна 10-15% от диаметра ротора, например если ротор 60мм, то магниты нужны толщиной 5-7мм. Для этого магниты покупают обычно круглые. Если ротор примерно 6см вдиаметре, то магниты можно высотой 6-10 мм. Определившись какие магниты использовать, на шаблоне длинна которой равна длинне окрушности

Пример рассчёта магнитов для ротора, например диаметр ротора 60см, высчитываем длинну окружности =188см. Делим длинну на количество полюсов, в данном случае на 6, и получаем 6 секций, в каждой секции магниты вклеиваются одинаковым полюсом. Но это ещё не всё. Терепь надо высчитать сколько магнитов войдёт в один полюс, чтобы их ровно распределить по полюсу. Например ширина круглого магнита 1см,расстояние между магнитами около 2-3мм, значит 10мм +3=13мм.

Длинну окружности делим на 6 частей=31мм, это ширина одного полюса по длинне окружности ротора, а ширина полюса по железу, дапустим 60мм. Значит получается площаадь полюса 60 на 31 мм. Это получается 8 в 2 ряда магнитов на полюс с расстоянием между собой 5мм. В этом случае надо пересчитать количество магнитов, чтобы они как можно плотнее уместились на полюсе.

Сдесь пример на магнитах шириной 10мм, поэтому получается расстояние между ними 5мм. Если уменьшить диаметр магнитов например в 2 раза, то-есть 5мм, то они более плотно заполнят полюс вследствие чего увеличится магнитное поле от большего каличества общей массы магнитом. Таких магнитов(5мм) поместится уже 5 рядов, а в длинну 10, то-есть 50 магнитов на полюс, и общее количество на ротор 300шт.

Для того чтобы уменьшить залипание шаблон нужно разметить так, чтобы смещение магнитов при наклейке было на ширину одного магнита, если ширина магнита 5мм, то и смещение на 5мм.

Теперь когда с магнитами опрделились нужно проточить ротор, чтобы поместились магниты. Если высота магнитов 6мм, то стачивается диамет на 12+1мм, 1мм это запас на кривезну рук. Магниты можно разместить на роторе двумя способами.

Первый способ это предвартельно делается оправка, в которой сврлятся отверстия под магниты по шаблону, после оправка одевается на ротор, и магниты вклеиваются в просверленые отверстия. На роторе после проточки нужно дополнительно сточить на глубину равную высоте магнитов разделительный алюминиевые полоски между железом. А полученные бороздки заполнить отожжоными опилками смешаные с эпоксидным клеем. Это значительно уведличит эффективность, опилки будут служить дополнительным магнитопроводом между железом ротора. Выборку можно сделать отрезной машинкой или на станке.

Оправка для наклейки магнитов делается так, проточеный вал оборачивают полеинтеленом, потом наматывают слой за слоем бинт, пропитанный эпоксидным клеем, после стачивают на станке под размер и снимают с ротора, наклеивают шоблон и сверлют отверстия под магниты.После девают оправку обратно на ротор и наклеивают магниты Клеют обычно на эпоксидный клей Ниже на фото два примера наклейки агнитов, первый пример на 2-х фотоэто наклейка магнитов с помощъю оправки, а второй на следующей странице прямо через шаблон.На первых двух фотографиях хорошо видно и я думаю понятно как клеются магниты.

>

>

На следующей странице продолжение.

Содержание:

Электротехника существует и действует по собственным законам и принципам. Среди них существует так называемый принцип обратимости, позволяющий изготовить генератор своими руками из асинхронного двигателя. Для решения этой задачи требуется знание и четкое понимание принципов работы данного оборудования.

Переход асинхронного двигателя в режим генератора

Прежде всего нужно рассмотреть принцип работы асинхронного двигателя, поскольку именно этот агрегат служит основой при создании генератора.

Электродвигатель асинхронного типа представляет собой устройство, превращающее электрическую энергию в механическую и тепловую. Возможность такого превращения обеспечивается , возникающей между обмотками статора и ротора. Главная особенность асинхронных двигателей заключается в разнице частоты вращения этих элементов.

Сами статор и ротор являются соосными деталями круглого сечения, изготовленные из стальных пластин с пазами внутри кольца. В целом наборе образуются продольные канавки, где располагается обмотка из медной проволоки. В роторе функцию обмотки выполняют прутки из алюминия, находящиеся в пазах сердечника и замкнутые с обеих сторон стопорными пластинами. Когда на обмотки статора подается напряжение, возникает вращающееся магнитное поле. В связи с разницей частоты вращения, между обмотками происходит наведение ЭДС, что приводит к вращению центрального вала.

В отличие от асинхронного электродвигателя, генератор, наоборот, осуществляет превращение тепловой и механической энергии в электрическую. Наибольшее распространение получили индукционные устройства, характеризующиеся наведением межобмоточной электродвижущей силы. Как и в случае с асинхронным двигателем, причиной наведения ЭДС становится разность оборотов магнитных полей статора и ротора. Отсюда вполне закономерно следует, исходя из принципа обратимости, что превратить асинхронный двигатель в генератор вполне возможно, за счет определенных технических реконструкций.

Каждый асинхронный электрогенератор представляет собой своего рода трансформатор, преобразующий механическую энергию вала электродвигателя в переменный ток. Это происходит, когда скорость вала начинает превышать синхронную и достигает 1500 об/мин и выше. Такая частота вращения достигается за счет приложения высокого крутящего момента. Его источником может стать двигатель внутреннего сгорания бензогенератора или крыльчатка ветряка.

При достижении синхронной частоты вращения, в работу включается конденсаторная батарея, в которой создается емкостный ток. Под его действием обмотки статора самовозбуждаются и в режиме генерирования начинает вырабатываться электрический ток. Надежная и устойчивая работа такого генератора, способного выдавать промышленную частоту 50 Гц, при соблюдении определенных условий:

  • Скорость вращения должна быть выше частоты работы самого электродвигателя на величину процента скольжения, составляющего 2-10%.
  • Скорость вращения генератора должна совпадать с синхронной скоростью.

Как сделать генератор

Имея определенную информацию, практические навыки работы в электротехнике, вполне возможно собрать работоспособный генератор своими руками из асинхронного двигателя. В первую очередь нужно вычислить реальную, то есть асинхронную частоту вращения электродвигателя, который будет использоваться в качестве генератора. Данную операцию можно выполнить с помощью тахометра.

Далее необходимо определить синхронную частоту электродвигателя, которая для генератора будет асинхронной. Как уже говорилось, здесь нужно учитывать величину скольжения, составляющую 2-10%. Например, в результате измерений была получена скорость вращения 1450 об/мин., следовательно, необходимая частота работы генератора составит 1479-1595 об/мин.

Для нужд строительства частного жилого дома или дачи домашнему мастеру может понадобиться автономный источник электрической энергии, который можно купить в магазине или собрать своими руками из доступных деталей.

Самодельный генератор способен работать от энергии бензинового, газового или дизельного топлива. Для этого его надо подключить к двигателю через амортизирующую муфту, обеспечивающую плавность вращения ротора.

Если позволяют местные природные условия, например, дуют частые ветры или близко расположен источник проточной воды, то можно создать ветряную или гидравлическую турбину и подключить ее к асинхронному трехфазному двигателю для выработки электроэнергии.

За счет подобного устройства у вас будет постоянно работающий альтернативный источник электричества. Он снизить потребление энергии от государственных сетей и позволить экономить на ее оплате.


В отдельных случаях допустимо использовать однофазное напряжение для вращения электрического двигателя и передачи им крутящего момента на самодельный генератор для создания собственной трехфазной симметричной сети.

Как подобрать асинхронный двигатель для генератора по конструкции и характеристикам

Технологические особенности

Основу самодельного генератора составляет асинхронный электродвигатель трехфазного тока с:

  • фазным;
  • или короткозамкнутым ротором.

Устройство статора

Магнитопроводы статора и ротора изготавливают из изолированных пластин электротехнической стали, в которых созданы пазы для размещения проводов обмотки.


Три отдельные обмотки статора могут быть соединены на заводе по схеме:

  • звезды;
  • или треугольника.

Их выводы подключают внутри клеммной коробки и соединяют перемычками. Сюда же монтируют кабель питания.


В отдельных случаях может выполняться подключение проводов и кабеля другими способами.


К каждой фазе асинхронного двигателя подводятся симметричные напряжения, сдвинутые по углу на треть окружности. Они формируют токи в обмотках.


Эти величины удобно выражать в векторной форме.

Особенности конструкции роторов

Двигатели с фазным ротором

Их снабжают обмоткой, выполненной по образцу статорной, а выводы от каждой соединяют с контактными кольцами, которые обеспечивают электрический контакт со схемой запуска и регулировки через прижимные щетки.

Такая конструкция довольно сложная в изготовлении, дорогая по стоимости. Она требует периодического наблюдения за работой и квалифицированного обслуживания. По этим причинам для самодельного генератора применять ее в таком исполнении нет смысла.

Однако, если имеется подобный двигатель и ему нет другого применения, то можно выводы каждой обмотки (те концы, которые подключаются к кольцам) закоротить между собой. Таким способом фазный ротор превратится в короткозамкнутый. Его можно подключать по любой рассматриваемой ниже схеме.

Двигатели с короткозамкнутым ротором

Внутри пазов магнитопровода ротора залит алюминий. Обмотка выполнена в виде вращающейся беличьей клетки (за что и получила такое дополнительное название) с замкнутыми накоротко по концам кольцами-перемычками.

Это самая простая схема двигателя, которая лишена подвижных контактов. За счет этого она длительно работает без вмешательства электриков, отличается повышенной надежностью. Ее и рекомендуется применять для создания самодельного генератора.

Обозначения на корпусе двигателя


Чтобы самодельный генератор надежно работал необходимо обращать внимание на:

  • , характеризующий качество защиты корпуса от воздействий внешней среды;
  • мощность потребления;
  • число оборотов;
  • схему соединения обмоток;
  • допустимые токи нагрузок;
  • КПД и косинус φ.

Принцип работы асинхронного двигателя в качестве генератора

В основу его воплощения заложен метод обратимости электрической машины. Если у отключенного от напряжения сети двигателя начать принудительно вращать ротор с расчетной скоростью, то в обмотке статора будет наводиться ЭДС за счет наличия остаточной энергии магнитного поля.

Остается только подключить к обмоткам конденсаторную батарею соответствующего номинала и по ним станет протекать емкостной опережающий ток, имеющий характер намагничивающего.

Чтобы происходило самовозбуждение генератора, а на обмотках формировалась симметричная система трехфазных напряжений, необходимо подобрать емкость конденсаторов, большую определенной, критической величины. Кроме ее значения на выходную мощность, естественно, влияет конструкция двигателя.

Для нормальной выработки трехфазной энергии с частотой 50 Гц необходимо поддерживать скорость вращения ротора, превышающую асинхронную составляющую на величину скольжения S, которая лежит в пределах S=2÷10%. Ее требуется поддерживать на уровне синхронной частоты.

Отход синусоиды от стандартного значения по частоте отрицательно повлияет на работу оборудования с электрическими двигателями: пилами, рубанками, различными станками и трансформаторами. На резистивных нагрузках с ТЭН и лампами накаливания это практически не сказывается.

Электрические схемы подключения

На практике используются все распространенные способы соединения обмоток статора асинхронного двигателя. Выбирая одну из них создают различные условия для работы оборудования и вырабатывают напряжение определённых значений.

Схемы звезды

Популярный вариант подключения конденсаторов

Схема подключения асинхронного двигателя с обмотками, соединенными звездой, для работы в качестве генератора трехфазной сети имеет стандартный вид.

Схема асинхронного генератора с подключением конденсаторов к двум обмоткам

Этот вариант довольно популярен. Он позволяет питать от двух обмоток три группы потребителей:

  • две напряжением 220 вольт;
  • одну - 380.


Рабочий и пусковой конденсаторы подключаются в схему отдельными выключателями.

На основе этой же схемы можно создать самодельный генератор с подключением конденсаторов к одной обмотке асинхронного двигателя.

Схема треугольника

При сборке обмоток статора по схеме звезды генератор будет выдавать трехфазное напряжение 380 вольт. Если осуществить их переключение на треугольник, то - 220.


Приведенные выше на картинках три схемы являются базовыми, но не единственными. На их основе могут создаваться другие способы подключения.

Как рассчитать характеристики генератора по мощности двигателя и емкости конденсаторов

Для создания нормальных условий работы электрической машины необходимо соблюсти равенство ее номинального напряжения и мощности в режимах генератора и электродвигателя.

С этой целью подбирают емкость конденсаторов с учетом вырабатываемой ими реактивной мощности Q при различных нагрузках. Ее величину рассчитывают по выражению:

Q=2π∙f∙C∙U 2

Из этой формулы, зная мощность двигателя, для обеспечения полной нагрузки можно рассчитать емкость батареи конденсаторов:

С=Q/2π∙f∙U 2

Однако, следует учесть режим работы генератора. На холостом ходу конденсаторы станут излишне нагружать обмотки и нагревать их. Это приводит к большим потерям энергии, перегреву конструкции.

Для устранения подобного явления конденсаторы подключают ступенчато, определяя их количество в зависимости от приложенной нагрузки. Чтобы упростить подбор конденсаторов для запуска асинхронного двигателя в режиме генератора, создана специальная таблица.

Мощность генератора (кВА) Режим полной нагрузки Режим холостого хода
cos φ=0.8 cos φ=1 Q (кВАр) С (мкф)
Q (кВАр) С (мкф) Q (кВАр) С (мкф)
15 15,5 342 7,8 172 5,44 120
10 11,1 245 5,9 130 4,18 92
7 8,25 182 4,44 98 3,36 74
5 6,25 138 3,4 75 2,72 60
3,5 4,53 100 2,54 56 2,04 45
2 2,72 60 1,63 36 1,27 28

Для использования в составе емкостной батареи хорошо подходят пусковые конденсаторы серии K78-17 и им подобные с рабочим напряжением от 400 вольт и больше. Вполне допустимо заменить их металлобумажными аналогами с соответствующими номиналами. Собирать их придется параллельным подключением.

Использовать модели электролитических конденсаторов для работы в цепях асинхронного самодельного генератора не стоит. Они предназначены для цепей постоянного тока, а при прохождении синусоиды, меняющейся по направлению, быстро выходят из строя.

Существует специальная схема их подключения для подобных целей, когда каждая полуволна направляется диодами на свою сборку. Но она довольно сложная.

Конструктивное исполнение

Автономное устройство электростанции должно в полной мере обеспечивать работающего оборудования и выполняться единым модулем, включающим навесной электрощит с приборами:

  • измерения - вольтметром до 500 вольт и частотомером;
  • коммутации нагрузок - три выключателя (один общий подает напряжение от генератора на схему потребителей, а два остальных осуществляют подключения конденсаторов);
  • защит - , устраняющим последствия возникновения коротких замыканий или перегрузок и ), спасающее работников от пробоя изоляции и попадания потенциала фазы на корпус.

Резервирование основной схемы питания

Создавая самодельный генератор необходимо предусмотреть его совместимость со схемой заземления рабочего оборудования, а при автономной работе – надежно подключать к .

Если электростанция создается для резервного питания приборов, работающих от государственной сети, то использовать ее следует при отключении напряжения с линии, а при восстановлении - останавливать. С этой целью достаточно установить рубильник, управляющий всеми фазами одновременно или подключить сложную систему автоматики включения резервного питания.

Выбор напряжения

Схема на 380 вольт обладает повышенной опасностью поражения человека. Ее используют в крайних случаях, когда фазной величиной на 220 обойтись нет возможности.

Перегрузки генератора

Такие режимы создают излишний нагрев обмоток с последующим разрушением изоляции. Они возникают при превышении токов, проходящих по обмоткам из-за:

  1. неправильного подбора емкости конденсаторов;
  2. подключения потребителей повышенной мощности.

В первом случае необходимо тщательно следить за тепловым режимом во время холостого хода. При излишнем нагреве требуется корректировать емкость конденсаторов.

Особенности подключения потребителей

Общая мощность трехфазного генератора состоит из трех частей, вырабатываемых в каждой фазе, которая составляет 1/3 от общей. Ток, проходящий по одной обмотке, не должен превышать номинальную величину. Это надо учитывать при подключении потребителей, распределять их равномерно по фазам.

Когда самодельный генератор создан для работы от двух фаз, то он не может безопасно выработать электроэнергии больше, чем на 2/3 от общей величины, а если задействована всего одна фаза, то - только 1/3.

Контроль частоты

Следить за этим показателем позволяет частотомер. Когда его в конструкцию самодельного генератора не установили, то можно пользоваться косвенным методом: на холостом ходу выходное напряжение превышает номинальное 380/220 на 4÷6% при частоте 50 Гц.

Один из вариантов изготовления самодельного генератора из асинхронного двигателя и его возможности показывают в своем видеоролике владельцы канала Мария с Александром Костенко.

(13 голосов, в среднем: 4.5 из 5)