Никель в домашних условиях. Никелирование в домашних условиях (химическое и гальваническое)

С ценами на работы по никелированию, Вы можете ознакомиться в .

Нанесение никеля, также как и меди, является одним из обязательных процедур при подготовке изделия под целевое финишное покрытие. Электролитов для нанесения никеля существует множество. Он разнятся по способам применения, режимам, качеству покрытия и составам. Если Вы решили заниматься гальваникой, без никелирования Вам не обойтись.
Сам по себе никель не часто является целевым покрытием. В качестве антикоррозионного покрытия он не является лучшим кандидатом, в это случае больше подойдут цинк и хром, ввиду их химических свойств и способности «оттягивать» окисление железа, склонного к ржавчине, на себя. Как декоративное покрытие никелирование используется чаще, но в ввиду его химической нестойкости, при необходимости наносить цвет «белого» металла, чаще выбирают покрытие палладием или родием.

На нашем предприятии используются гальванический никель и химический (иммерсионный) никель.
Наиболее простой раствор для никелирования –

Раствор кислого (подслойного) никелирования.

Электролит кислого никелирования применяется в качестве первого металлического покрытия после очистки и полировки изделия. Его можно считать «клеем» или основой, на которую потом положим все остальные металлы. Толщина покрытия из такого раствора не превышает 1 мкм, а скорость осаждения 1-2 мкм/мин. Длительность выдержки в ванне кислого никелирования не больше 1 минуты. Это связано с тем, что кислый никель дает хрупкие и темные осадки на больших толщинах. Но, тем не менее, положить тонкий слой кислого никеля необходимо. Некоторые компоненты его состава обеспечивает микроразрушения поверхности для качественной адгезии покрытия, вместе с тем, нанося тонкий слой свежего никеля, мы обеспечиваем хорошее качество адгезии для следующего покрытия медью или блестящим никелем. Электролит кислого никелирования очень стабилен во времени и стоек к загрязнениям.

Электролит блестящего никелирования.

Электролит блестящего никелирования применяют для микровыравнивания поверхности изделия. По сравнению с блестящей медью, он дает менее зеркальные осадки. Скорость нарастания толщины и рабочая плотность тока также значительно ниже, но этот электролит необходим для финишной обработки изделий. Его обязательно используют для получения финишных осадков толщиной до 15 мкм. Или, при толщине покрытия 3-6 мкм как качественную подложку под гальваническое или иммерсионное золото.
Очень хорошие результаты этот раствор демонстрирует в барабанных и колокольных ваннах.

Электролит химического (иммерсионного) никелирования.

Химическое никелирование применяется при обработке сложнопрофильных изделий. Работает без приложения внешнего тока. Равномерное наращивание ненапряженного никеля во всех точках поверхности изделия, обеспечивает твердое, полублестящее покрытие. Часто этот раствор применяют для защиты от коррозии путем наращивания никеля в толщину 6-30 мкм. Применение химического никелирования ограничивается исходным материалом детали. Химическое никелирование – раствор горячий, что не всегда позволяет использовать его для пластиков. Также, в процессе работы, химический никель может высаживать металл в объеме жидкости, а не только на деталь, т.е может оказаться, что весь объем раствора – одноразовый.
Мы используем несколько видов химического никелирования: щелочное и кислотное. Принцип работы у них одинаковый, качество покрытия, составы и режим работы значительно отличаются. Какой раствор для химического никелирования использовать, решается в зависимости от изделия.
Кроме перечисленных видов никелирования, имеется еще раствор черного никеля.

Черный никель.

Черный никель – самое черное покрытие из всех, которые можно получить гальваническим путем. Черный хром, черный родий, черный рутений – все эти покрытия темно-серого цвета. Действительно черное покрытие – только черный никель. Если рассматривать состав этого покрытия, это не вполне никелевый осадок, для получения темного покрытия, в раствор солей никеля вводятся дополнительные компоненты. Если хотите получить черный цвет – это Ваш вариант. Если один огромный минус у черного никеля: это покрытие совершенно не стойкое к истиранию. Настолько, что если несколько раз взять в руки изделия покрытое черным никелем, гальваническое покрытие можно стереть. Так что самый красивый черный цвет из всех гальванических покрытия нужно обязательно защитить лаком. Или поставить на полку и издалека любоваться совершенством черного никеля.
Существует еще несколько видов гальванического никеля. Их используют не постоянно, а только по мере надобности. С основными задачами вполне справляется перечисленная линейка ванн для никелирования.

Если Вам необходимо ориентироваться в ценах на покрытие никелем, можно воспользоваться табличкой ниже, при этом, необходимо помнить, что каждое изделие перед нанесением гальванического покрытия, должно быть осмотрено технологом и техническое задание на покрытие должно быть утверждено заказчиком.

Цены на никелированные изделия на заказ:

Примеры никелирования изделий:

Никелирование монет «Sochi 2014»

Монеты «Sochi 2014», покрытие никель блестящий 3 мкм. Стоимость покрытия 1 монеты 12 рублей (партия 2000 шт).

Если у Вас есть вопросы по никелированию, будем рады ответить Вам на них по телефону или по электронной почте.

Никелирование применяется в машиностроении, приборостроении н других отраслях промышленности. Никелем покрывают детали из стали и цветных металлов для защиты их от коррозии, декоративной отделки, повышения сопротивления механическому износу. Благодаря высокой коррозионной стойкости в растворах щелочей никелевые покрытия применяют для защиты химических аппаратов от щелочных растворов. В пищевой промышленности никель может заменять оловянные покрытия. В оптической промышленности получил распространение процесс черного никелирования
При электрохимическом осаждении никеля на катоде протекают два основных процесса: Ni 2+ + 2e - → Ni и 2Н + + 2е - → Н 2 .
В результате разряда ионов водорода концентрация их в прикатодном слое снижается, т. е. электролит защелачивается. При этом могут образовываться основные соли никеля, которые влияют на структуру н механические свойства никелевого покрытия. Выделение водорода вызывает также питтинг - явление, при котором пузырьки водорода, задерживаясь на поверхности катода, препятствуют разряду ионов никеля в этих местах. На покрытии образуются ямки и осадок теряет декоративный вид. В борьбе с питтингом применяют вещества, которые снижают поверхностное натяжение на границе металл - раствор.
При анодном растворении никель легко пассивируется. При пассивации анодов в электролите уменьшается концентрация ионов никеля и быстро растет концентрация ионов водорода, что приводит к падению выхода по току и ухудшению качества осадков. Для предупреждения пассивирования анодов в электролиты никелирования вводят активаторы. Такими активаторами являются ионы хлора, которые вводят в электролит в виде хлористого никеля или хлористого натрия.

Будьте внимательны! Компания «ЛВ-Инжиниринг» не предоставляет услуги по нанесению гальванических покрытий! Наша организация осуществляет проектирование гальванических производств, изготовление гальванических ванн и линий из полипропилена, монтаж и пусконаладочные работы по данному направлению.

Сернокислые электролиты никелирования

Сернокислые электролиты никелирования получили наибольшее распространение. Эти электролиты устойчивы в работе, при правильной эксплуатации они могут использоваться в течение нескольких лет без замены. Состав некоторых электролитов и режимы никелирования:

Состав Электролит №1 Электролит №2 Электролит №3
Никель сернокислый 280-300 400-420
Натрий сернокислый 50-70 - -
Магний сернокислый 30-50 50-60 -
Кислота борная 25-30 25-40 25-40
Натрий хлористый 5-10 5-10 -
Натрий фтористый - - 2-3
Температура, °C 15-25 30-40 50-60
Плотность тока. А/дм 2 0,5-0,8 2-4 5-10
pH 5,0-5,5 3-5 2-3

Сернокислый натрий и сернокислый магний вводят в электролит для повышения электропроводности раствора. Проводимость растворов натрия выше, но в присутствии сернокислого магния получаются более светлые, мягкие и легко полируемые осадки.
Никелевый электролит очень чувствителен даже к небольшим изменениям кислотности. Для поддержания величины рН в требуемых пределах необходимо применять буферные соединения. В качестве такого соединения, препятствующего быстрому изменению кислотности электролита, применяют борную кислоту.
Для облегчения растворения анодов в ванну вводят хлористые соли натрия.
Для приготовления сернокислых электролитов никелирования необходимо растворить в отдельных емкостях в горячей воде все компоненты. После отстаивания растворы фильтруют в рабочую ванну. Растворы перемешивают, проверяют рН электролита и при необходимости корректируют 3%-ным раствором едкого натра или 5%-иым раствором серной кислоты. Затем электролит доводят водой до требуемого объема. При наличии примесей необходимо перед началом эксплуатации электролита произвести его проработку, так как никелевые электролиты чрезвычайно чувствительны к посторонним примесям как органическим, так и неорганическим.
Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения приведены в Таблице 1.

Таблица 1. Дефекты при эксплуатации сернокислых электролитов никелирования и способы их устранения

Дефект Причина дефекта Способ устранения
Никель не осаждается. Обильное выделение водорода Низкое значение рН Откорректировать рН 3%-иым раствором едкого натра
Частичное покрытие никелем Плохое обезжиривание деталей Улучшить подготовку
Неправильное расположение анодов Равномерно распределить аноды
Детали взаимно экранируют друг друга Изменить расположение деталей в ванне
Покрытие имеет серый цвет Наличие в электролите солей меди Очистить электролит от меди
Хрупкое, растрескивающееся покрытие Обработать электролит активированным углем и проработать током
Наличие примесей железа Очистить электролит от железа
Низкое значение рН Откорректировать рН
Образование питтинга Загрязнение электролита органическими соединениями Проработать электролит
Низкое назначение рН Откорректировать рН
Слабое перемешивание Усилить перемешивание
Появление черных или коричневых полос на покрытии Наличие примесей цинка Очистить электролит от цинка
Образование дендритов на кромках деталей Высокая плотность тока Снизить плотность тока
Чрезмерно продолжительный процесс никелирования Ввести промежуточный подслой меди или уменьшить время электролиза
Аноды покрыты коричневой или черной пленкой Высокая анодная плотность тока Увеличить поверхность анодов
Малая концентрация хлористого натрия Добавить 2-3 г/л хлористого натрия

При никелировании применяют горячекатаные аноды, а также непассивирующиеся аноды. Применяют также аноды в форме пластинок (карточек), которые загружают в зачехленные титановые корзины. Карточные аноды способствуют равномерному растворению никеля. Во избежание загрязнения электролита анодным шламом никелевые аноды следует заключать в чехлы из ткани, которые предварительно обрабатывают 2-10%-ным раствором соляной кислоты.
Отношение анодной поверхности к катодной при электролизе 2: 1.
Никелирование мелких деталей осуществляют в колокольных и барабанных ваннах. При никелировании в колокольных ваннах применяют повышенное содержание хлористых солей в электролите для предотвращения пассивации анодов, которая может возникать из-за несоответствия поверхности анодов и катодов, вследствие чего концентрация никеля в электролите понижается и уменьшается значение рН. Оно может достигнуть таких пределов, при которых вообще прекращается осаждение никеля. Недостатком при работе в колоколах и барабанах является также большой унос электролита с деталями из ванн. Удельные нормы потерь при этом составляют от 220 до 370 мл/м 2 .


Электролиты блестящего никелирования

Для защитно-декоративной отделки деталей широко применяют блестящие и зеркальные никелевые покрытия, получаемые непосредственно из электролитов с блескообразующими добавками. Состав электролита и режим никелирования:

Никель сернокислый - 280-300 г/л
Никель хлористый - 50-60 г/л
Кислота борная - 25-40 г/л
Сахарин 1-2 г/л
1,4-бутиндиол - 0,15-0,18 мл/л
Фталимид 0,02-0,04 г/л
рН = 4-4,8
Температура = 50-60°С
Плотность тока = 3-8 А/дм 2

Для получения блестящих никелевых покрытий используют также электролиты с другими блескообразующими добавками: хлорамина Б, пропаргилового спирта, бензосульфамида и др.
При нанесении блестящего покрытия необходимо интенсивное перемешивание электролита сжатым воздухом желательно в сочетании с качанием катодных штанг, а также непрерывная фильтрация электролита,
Электролит приготовляют следующим образом. В дистиллированной или деионизированной горячей (80-90°С) воде растворяют при перемешивании сернокислый и хлористый никель, борную кислоту. Доведенный водой до рабочего объема электролит подвергают химической и селективной очистке. Для удаления меди и цинка электролит подкисляют серной кислотой до рН 2-3 завешивают катоды большой площади из рифленой стали и прорабатывают электролит в течение суток при температуре 50-60°С, перемешивая сжатым воздухом. Плотность тока 0,1-0,3 А/дм 2 . Затем рН раствора доводят до 5,0-5,5, после чего в него вводят перманганат калия (2 г/л) или 30%-ный раствор перекиси водорода (2 мл/л).
Раствор перемешивается в течение 30 мин, добавляют 3 г/л активированного угля, обработанного серной кислотой, и перемешивают электролит 3-4 с помощью сжатого воздуха. Раствор отстаивается 7-12 ч, затем фильтруется в рабочую ванну.
В очищенный электролит вводят блескообразователи: сахарин и 1,4-бутиндиол непосредственно, фталимид - предварительно растворив в небольшом количестве электролита, подогретого до 70-80° С. Доводят рН до требуемого значения и приступают к работе. Расход блескообразователей при корректировании электролита составляет: сахарин 0,01-0,012 г/(А.ч); 1,4-бутнндиол (35%-ный раствор) 0,7-0,8 мл/(А.ч); фталимид 0,003-0,005 г/(А.ч).
Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения приведены в Таблице 2.

Таблица 2. Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения

Дефект Причина дефекта Способ устранения

Недостаточный блеск покрытия

Мала концентрация блескообразователей Ввести блескообразователи
Не выдерживается заданная плотность тока и рН Отрегулировать плотность тока и рН

Темный цвет покрытия и/или темные пятна

В электролите имеются примеси тяжелых металлов Произвести селективную очистку электролита при низкой плотности тока
Питтинг Наличие в электролите примесей железа Очистить электролит и ввести антипиттинговую добавку
Недостаточное перемешивание Увеличить воздушное перемешивание
Низкая температура электролита Повысить температуру электролита
Хрупкие осадки Загрязнение электролита органическими соединениями Очистить электролит активированным углем
Пониженное содержание 1,4-бутиндиола Ввести добавку 1,4-бутиндиола

Свойства и области применения покрытия . Основой процесса химического никелирования является реакция восстановления никеля из водных растворов его солей гипофосфитом натрия. Промышленное применение получили способы осаждения никеля из щелочных и кислых растворов. Осажденное покрытие имеет полублестящий металлический вид, мелкокристаллическую структуру и является сплавом никеля с фосфором. Содержание фосфора в осадке зависит от состава раствора и колеблется от 4-6% для щелочных до 8-10% для кислых растворов.

В соответствии с содержанием фосфора изменяются и физические константы никельфосфорного осадка. Удельный вес его равен 7,82-7,88 г/см 3 , температура плавления 890-1200°, удельное электрическое сопротивление составляет 0,60 ом·мм 2 /м. После термообработки при 300-400° твердость никельфосфорного покрытия возрастает до 900-1000 кГ/мм 2 . При этом многократно возрастает и прочность сцепления.

Указанные свойства никельфосфорного покрытия определяют и его области применения.

Его целесообразно применять для покрытия деталей сложного профиля, внутренней поверхности трубок и змеевиков, для равномерного покрытия деталей с весьма точными размерами, для повышения износостойкости трущихся поверхностей и деталей, подвергающихся температурным воздействиям, например, для покрытия пресс-форм.

Никельфосфорному покрытию подвергаются детали из черных металлов, меди, алюминия и никеля.

Этот метод непригоден для осаждения никеля на таких металлах или покрытиях, как свинец, цинк, кадмий и олово.

Осаждение никеля из щелочных растворов . Щелочные растворы характеризуются высокой устойчивостью, простотой корректировки, отсутствием склонности к бурному и мгновенному выпадению порошкообразного никеля (явление саморазряда) и возможностью их длительной эксплуатации без замены.

Скорость осаждения никеля составляет 8-10 мк/час. Процесс идет с интенсивным выделением водорода на поверхности Деталей.

Составление раствора заключается в растворении каждого из компонентов в отдельности, после чего их сливают вместе в рабочую ванну, за исключением гипофосфита натрия. Его приливают лишь тогда, когда раствор нагрет до рабочей температуры и детали подготовлены к покрытию.

Подготовка поверхности стальных деталей к покрытию не имеет специфических особенностей.

После подогрева раствора до рабочей температуры его корректируют 25-процентным раствором аммиака до устойчивого синего цвета, приливают раствор гипофосфита натрия, завешивают детали и приступают к покрытию без предварительной проработки. Корректировку раствора производят главным образом аммиаком и гипофосфитом натрия. При большом объеме ванны никелирования и высокой удельной загрузке деталей корректировку раствора аммиаком осуществляют непосредственно от баллона с газообразным аммиаком, с непрерывной подачей газа к дну ванны посредством резиновой трубки.

Раствор гипофосфита натрия для удобства корректировки готовят с концентрацией 400-500 г/л.

Раствор хлористого никеля обычно готовят для корректировки совместно с хлористым аммонием и лимоннокислым натрием. Для этой цели наиболее целесообразно пользоваться раствором, содержащим 150 г/л хлористого никеля, 150 г/л хлористого аммония и 50 г/л лимоннокислого натрия.

Удельный расход гипофосфита натрия на 1 дм 2 поверхности покрытия, при толщине слоя 10 мк, составляет около 4,5 г, а никеля, в пересчете на металл, - около 0,9 г.

Основные неполадки при химическом осаждении никеля из щелочных растворов приведены в табл. 8.

Осаждение никеля из кислых растворов . В отличие от щелочных кислые растворы характеризуются большим разнообразием добавок к растворам солей никеля и гипофосфита. Так, для этой цели могут применяться уксуснокислый натрий, янтарная, винная и молочная кислоты, трилон Б и прочие органические соединения. Из числа многих составов ниже приведен раствор со следующим составом и режимом осаждения:


Величину рН следует корректировать 2-процентным раствором едкого натра. Скорость осаждения никеля составляет 8-10 мк/час.

Перегрев раствора выше 95° может привести к саморазряду никеля с мгновенным выпадением темного губчатого осадка и выплескиванием раствора из ванны.

Корректировку раствора по концентрации входящих в него компонентов производят лишь до накопления в нем 55 г/л фосфита натрия NaH 2 PО 3 , после чего из раствора может выпадать фосфит никеля. По достижении указанной концентрации фосфита никелевый раствор сливают и заменяют новым.

Термообработка . В тех случаях, когда никель наносят с целью увеличения поверхностной твердости и износостойкости, детали подвергают термообработке. При высоких температурах никельфосфорный осадок образует химическое соединение, что обусловливает резкое повышение его твердости.

Изменение микротвердости в зависимости от температуры нагрева приведено на фиг. 13. Как видно из диаграммы, наибольшее повышение твердости имеет место в диапазоне температур 400-500°. При выборе температурного режима следует учитывать, что для ряда сталей, прошедших закалку или нормализацию, высокие температуры не всегда допустимы. Кроме того, термообработка, проводящаяся в воздушной среде, вызывает появление цветов побежалости на поверхности деталей, переходящих от золотисто-желтого цвета до фиолетового. По этим причинам температуру нагрева часто ограничивают в пределах 350-380°. Необходимо также, чтобы никелированные поверхности перед укладкой в печь были чистыми, так как всякие загрязнения выявляются после термообработки весьма интенсивно и удаление их возможно лишь полировкой. Продолжительность нагрева в 40-60 мин. является достаточной.

Оборудование и оснастка . Основной задачей при изготовлении оборудования для химического никелирования является выбор футеровки ванн, устойчивой к действию кислот и щелочей и теплопроводной. Для опытных работ и для покрытия мелких деталей используют фарфоровые и стальные эмалированные ванны.

При покрытии крупных изделий в ваннах емкостью 50-100 л и более применяются эмалированные баки с эмалями, стойкими в крепкой азотной кислоте. Некоторые заводы применяют стальные цилиндрические ванны, футерованные обмазкой, состоящей из клея № 88 и порошкообразной окиси хрома взятых в равных весовых количествах. Окись хрома может быть заменена наждачными микропорошками. Покрытие производят в 5-6 слоев с промежуточной воздушной сушкой.

На Кировском заводе для этой цели успешно применяют футеровку цилиндрических ванн съемными пластикатовыми чехлами. При необходимости очистки ванн растворы выкачивают насосом, а чехлы извлекают и обрабатывают в азотной кислоте. В качестве материала для подвесок и корзин следует применять углеродистую сталь. Изоляцию отдельных участков деталей и подвесок производят перхлорвиниловыми эмалями или пластикатом.

Для нагревания раствора следует применять электрические нагреватели с передачей тепла через водяную рубашку. Термообработку мелких деталей производят в термостатах. Для крупных изделий используют шахтные печи с автоматическим регулированием температуры.

Никелирование нержавеющих и кислотоупорных сталей . Никелирование производят для повышения поверхностной твердости и износостойкости, а также для защиты от коррозии в тех агрессивных средах, в которых эти стали неустойчивы.

Для прочности сцепления никельфосфорного слоя с поверхностью высоколегированных сталей решающее значение имеет способ подготовки к покрытию. Так, для нержавеющих сталей марки 1×13 и ей подобных подготовка поверхности заключается в ее анодной обработке в щелочных растворах. Детали монтируют на подвесках из углеродистой стали, применяя, если это необходимо, внутренние катоды, завешивают в ванну с 10-15-процентным раствором каустической соды и производят их анодную обработку при температуре электролита 60-70° и анодной плотности тока 5-10 а/дм 2 в течение 5-10 мин. до образования равномерного коричневого налета без металлических просветов. Затем детали промывают в холодной проточной воде, декапируют в соляной кислоте (уд. веса 1,19), разбавленной вдвое, при температуре 15-25° в течение 5-10 сек. После промывки в холодной проточной воде детали завешивают в ванну химического никелирования в щелочном растворе и покрывают по обычному режиму до заданной толщины слоя.

Для деталей из кислотоупорной стали типа IX18H9T анодная обработка должна производиться в хромовокислом электролите со следующим составом и режимом процесса:


После анодной обработки детали промывают в холодной проточной воде, декапируют в соляной кислоте, как это указано для нержавеющей стали, и завешивают в ванну никелирования.

Никелирование цветных металлов . Для осаждения никеля на ранее осажденный слой никеля детали обезжиривают, а затем декапируют в 20-30-процентном растворе соляной кислоты в течение 1 мин., после чего завешивают в ванну для химического никелирования. Детали из меди и ее сплавов никелируют в контакте с более электроотрицательным металлом, например с железом или с алюминием, используя для этой цели проволоку или подвески из этих металлов. В некоторых случаях для возникновения реакции осаждения достаточно создать кратковременное касание железного прута к поверхности медной детали.

Для никелирования алюминия и его сплавов детали травят в щелочи, осветляют в азотной кислоте, как это делается перед, всеми видами покрытий, и подвергают двукратной цинкатной обработке в растворе, содержащем 500 г/л едкого натра и 100 г/л окиси цинка, при температуре 15-25°. Первое погружение длится 30 сек., после чего осадок контактного цинка стравливают в разбавленной азотной кислоте, а второе погружение 10 сек., после чего детали промывают в холодной проточной воде и никелируют в ванне с щелочным никельфосфорным раствором. Полученное покрытие весьма непрочно связано с алюминием, и для повышения прочности сцепления детали прогревают, погружая их в смазочное масло при температуре 220-250° на 1-2 часа.

После термообработки детали обезжиривают растворителями и по мере необходимости протирают, полируют или подвергают другим видам механической обработки.

Никелирование металлокерамики и керамики . Технологический процесс никелирования ферритов заключается в следующих операциях: детали обезжиривают в 20-процентном растворе кальцинированной соды, промывают горячей дистиллированной водой и травят в течение 10-15 мин. в спиртовом растворе соляной кислоты с соотношением компонентов 1:1. Затем детали снова промывают горячей дистиллированной водой с одновременной очисткой шлама волосяными щетками. На покрываемые поверхности деталей кисточкой наносят раствор хлористого палладия с концентрацией его 0,5-1,0 г/л и рН 3,54:0,1. После воздушной сушки нанесение хлористого палладия повторяют еще раз, просушивают и погружают для предварительного никелирования в ванну с кислым раствором, содержащим 30 г/л хлористого никеля, 25 г/л гипофосфита натрия и 15 г/л янтарнокислого натрия. Для этой операции необходимо температуру раствора поддерживать в пределах 96-98° и рН 4,5-4,8. Затем детали промывают в дистиллированной горячей воде и никелируют в том же растворе, но при температуре 90°, до получения слоя толщиной 20-25 мк. После этого детали кипятят в дистиллированной воде, меднят в пирофосфатном электролите до получения слоя 1-2 мк, после чего подвергают бескислотной пайке. Прочность сцепления никельфосфорного покрытия с ферритной основой составляет 60-70 кГ/см 2 .

Кроме того, химическому никелированию подвергаются различные виды керамики, например ультрафарфор, кварц, стеатит, пьезокерамика, тиконд, термоконд и пр.

Технология никелирования составляется из следующих операций: детали обезжиривают спиртом, промывают в горячей воде и сушат.

После этого для деталей из тиконда, термоконда и кварца, производят сенсибилизацию их поверхности раствором, содержащим 10 г/л хлористого олова SnCl 2 и 40 мл/л соляной кислоты. Эта операция производится кисточкой или путем Натирания Деревянной шайбой, смоченной раствором, или же погружением деталей в раствор на 1-2 мин. Затем поверхность деталей активируют в растворе хлористого палладия PdCl 2 ·2Н 2 О.

Для ультрафарфора применяют подогретый раствор с концентрацией PdCl 2 ·2H 2 O 3-6 г/л и с длительностью погружения 1 сек. Для тиконда, термоконда и кварца концентрация снижается до 2-3 г/л с увеличением выдержки от 1 до 3 мин., после чего детали погружают в раствор, содержащий гипофосфит кальция Са(Н 2 РO 2) 2 в количестве 30 г/л, без подогрева, на 2-3 мин.

Детали из ультрафарфора с активированной поверхностью завешивают на 10-30 сек. в ванну предварительного никелирования со щелочным раствором, после чего детали промывают и снова завешивают в ту же ванну для наращивания слоя заданной толщины.

Детали из тиконда, термоконда и кварца после обработки в гипофосфите кальция никелируют в кислых растворах.

Химическое осаждение никеля из карбонильных соединений . При нагревании паров тетракарбонила никеля Ni(CO) 4 при температуре 280°±5 происходит реакция термического разложения карбонильных соединений с осаждением металлического никеля. Процесс осаждения происходит в герметически закрытом контейнере при атмосферном давлении. Газовая среда состоит из 20-25% (по объему) тетракарбонила никеля и 80-75% закиси углерода СO. Примесь кислорода в газе допустима не свыше 0,4%. Для равномерности осаждения следует создавать циркуляцию газа со скоростью подачи 0,01-0,02 м/сек и реверсированием направления подачи через каждые 30-40 сек. . Подготовка деталей к покрытию заключается в удалении окислов и жировых загрязнений. Скорость осаждения никеля составляет 5-10 мк/мин. Осажденный никель имеет матовую поверхность, темно-серый оттенок, мелкокристаллическую структуру, твердость 240-270 по Виккерсу и относительно малую пористость.

Прочность сцепления покрытия с металлом изделий весьма низка и для ее повышения до удовлетворительных величин необходима термообработка при 600-700° в течение 30-40 мин.

Мы переехали в новый офис - соседнее здание. Обращайте внимание на схему проезда в разделе контактов.

Вакуумные покрытия временно не наносим

В связи с модернизацией участка вакуумных покрытий, работы по вакуумным напылениям временно не выполняем.

Сертификат ISO 9000

Система менеджмента качества на нашем предприятии соответствует ISO 9000

Нанесение нитрида титана

Наносим вакуумным напылением нитрид титана (TiN) на изделия габаритами до 2500х2500х2500 мм.

Латунирование и бронзирование

Появилась возможность выполнения работ по декоративному нанесению латуни и бронзы

Хорошая новость! Мы переехали!

В связи с долгожданным расширением производства, мы переехали на новую площадку в г. Балашиха. Для вашего удобства - появилась возможность осуществлять забор/доставку деталей нашим автотранспортом!

Партнеры

Н - Никелирование

  • Шифры наносимых покрытий: Н, Н.б., Хим.Н.тв, Хим.Н, Н.м.ч.
  • Обрабатываемые стали: любые, в том числе алюминиевые и титановые сплавы
  • Габариты изделий: до 1000х1000х1000 мм. Масса до 3 т.
  • Нанесение покрытий на изделия любой сложности
  • ОТК, паспорт качества, работа в рамках ГОЗ

Общая информация

Никелирование - это процесс гальванического или химического нанесения никеля толщиной от 1 мкм до 100 мкм.
Никелевые покрытия обладают высокой коррозионной стойкостью, высокой твёрдостью и хорошими декоративными свойствами.

Температура плавления никеля: 1445° С
Микротвёрдость никелевых покрытий: до 500 HV (хим. 800 HV)

Области применения деталей с никелевым покрытием зависят от того, используется ли никелевое покрытие в качестве финишного, или же никелевое покрытие выступает подслоем (подложкой) для нанесения других гальванических покрытий.
Никелевые покрытия могут быть нанесены практически на все металлы.

Основные области применения гальванического и химического никелирования:

Использование никеля как самостоятельного покрытия

  • В декоративных целях.
    Никелевые покрытия обладают хорошим зеркальным блеском и практически не тускнеют на воздухе. Покрытия хорошо переносят эксплуатацию в атмосферных условиях благодаря высокой коррозионной стойкости. Часто никелем покрывают декоративные изделия, ограждения, оборудование и инструмент.
  • В технических целях.
    Для защиты от коррозии электрических контактов или механизмов, эксплуатирующихся во влажной среде, а также в качестве покрытия под пайку. В оптической промышленности получил распространение процесс черного никелирования.
  • В качестве замены хромированию.
    В ряде случаев возможна замена хромовых покрытий на никелевые, из-за технологических сложностях нанесения хрома на изделия со сложной геометрией поверхности. Если свойства покрытия и режимов нанесения выбраны правильно, разница в ресурсе изделий с покрытием может быть практически незаметна (узлы и детали различного назначения, в том числе и для пищевой промышленности)

Использование никеля в сочетании с другими гальванопокрытиями

  • При нанесении многослойных защитно-декоративных покрытий.
    Как правило, в сочетании с медью и хромом (меднение, никелирование, хромирование) и другими металлами в качестве промежуточного слоя для повышения блеска хромового покрытия, а также для коррозионной защиты и предохранения от диффузии меди через поры хрома на поверхность, что может приводить через короткое время к появлению рыжих пятен на хромовом покрытии.

Примеры деталей с никелированием

Технология никелирования

При электрохимическом осаждении никеля на катоде протекают два основных процесса: Ni 2+ + 2e - → Ni и 2Н + + 2е - → Н 2 .

В результате разряда ионов водорода концентрация их в прикатодном слое снижается, т. е. электролит защелачивается. При этом могут образовываться основные соли никеля, которые влияют на структуру н механические свойства никелевого покрытия. Выделение водорода вызывает также питтинг - явление, при котором пузырьки водорода, задерживаясь на поверхности катода, препятствуют разряду ионов никеля в этих местах. На покрытии образуются ямки и осадок теряет декоративный вид.

В борьбе с питтингом применяют вещества, которые снижают поверхностное натяжение на границе металл - раствор.

При анодном растворении никель легко пассивируется. При пассивации анодов в электролите уменьшается концентрация ионов никеля и быстро растет концентрация ионов водорода, что приводит к падению выхода по току и ухудшению качества осадков. Для предупреждения пассивирования анодов в электролиты никелирования вводят активаторы. Такими активаторами являются ионы хлора, которые вводят в электролит в виде хлористого никеля или хлористого натрия.

Сернокислые электролиты никелирования получили наибольшее распространение. Эти электролиты устойчивы в работе, при правильной эксплуатации они могут использоваться в течение нескольких лет без замены. Состав некоторых электролитов и режимы никелирования:

Состав Электролит №1 Электролит №2 Электролит №3
Никель сернокислый 280-300 400-420
Натрий сернокислый 50-70 - -
Магний сернокислый 30-50 50-60 -
Кислота борная 25-30 25-40 25-40
Натрий хлористый 5-10 5-10 -
Натрий фтористый - - 2-3
Температура, °C 15-25 30-40 50-60
Плотность тока. А/дм 2 0,5-0,8 2-4 5-10
pH 5,0-5,5 3-5 2-3

Сернокислый натрий и сернокислый магний вводят в электролит для повышения электропроводности раствора. Проводимость растворов натрия выше, но в присутствии сернокислого магния получаются более светлые, мягкие и легко полируемые осадки.

Никелевый электролит очень чувствителен даже к небольшим изменениям кислотности. Для поддержания величины рН в требуемых пределах необходимо применять буферные соединения. В качестве такого соединения, препятствующего быстрому изменению кислотности электролита, применяют борную кислоту.


Для облегчения растворения анодов в ванну вводят хлористые соли натрия.


Для приготовления сернокислых электролитов никелирования необходимо растворить в отдельных емкостях в горячей воде все компоненты. После отстаивания растворы фильтруют в рабочую ванну. Растворы перемешивают, проверяют рН электролита и при необходимости корректируют 3%-ным раствором едкого натра или 5%-иым раствором серной кислоты. Затем электролит доводят водой до требуемого объема.

При наличии примесей необходимо перед началом эксплуатации электролита произвести его проработку, так как никелевые электролиты чрезвычайно чувствительны к посторонним примесям как органическим, так и неорганическим.
Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения приведены в Таблице 1.

Таблица 1. Дефекты при эксплуатации сернокислых электролитов никелирования и способы их устранения

Дефект Причина дефекта Способ устранения
Никель не осаждается. Обильное выделение водорода Низкое значение рН Откорректировать рН 3%-иым раствором едкого натра
Частичное покрытие никелем Плохое обезжиривание деталей Улучшить подготовку
Неправильное расположение анодов Равномерно распределить аноды
Детали взаимно экранируют друг друга Изменить расположение деталей в ванне
Покрытие имеет серый цвет Наличие в электролите солей меди Очистить электролит от меди
Хрупкое, растрескивающееся покрытие Обработать электролит активированным углем и проработать током
Наличие примесей железа Очистить электролит от железа
Низкое значение рН Откорректировать рН
Образование питтинга Загрязнение электролита органическими соединениями Проработать электролит
Низкое назначение рН Откорректировать рН
Слабое перемешивание Усилить перемешивание
Появление черных или коричневых полос на покрытии Наличие примесей цинка Очистить электролит от цинка
Образование дендритов на кромках деталей Высокая плотность тока Снизить плотность тока
Чрезмерно продолжительный процесс никелирования Ввести промежуточный подслой меди или уменьшить время электролиза
Аноды покрыты коричневой или черной пленкой Высокая анодная плотность тока Увеличить поверхность анодов
Малая концентрация хлористого натрия Добавить 2-3 г/л хлористого натрия

При никелировании применяют горячекатаные аноды, а также непассивирующиеся аноды. Применяют также аноды в форме пластинок (карточек), которые загружают в зачехленные титановые корзины. Карточные аноды способствуют равномерному растворению никеля. Во избежание загрязнения электролита анодным шламом никелевые аноды следует заключать в чехлы из ткани, которые предварительно обрабатывают 2-10%-ным раствором соляной кислоты.
Отношение анодной поверхности к катодной при электролизе 2: 1.

Никелирование мелких деталей осуществляют в колокольных и барабанных ваннах. При никелировании в колокольных ваннах применяют повышенное содержание хлористых солей в электролите для предотвращения пассивации анодов, которая может возникать из-за несоответствия поверхности анодов и катодов, вследствие чего концентрация никеля в электролите понижается и уменьшается значение рН. Оно может достигнуть таких пределов, при которых вообще прекращается осаждение никеля. Недостатком при работе в колоколах и барабанах является также большой унос электролита с деталями из ванн. Удельные нормы потерь при этом составляют от 220 до 370 мл/м 2 .

Для защитно-декоративной отделки деталей широко применяют блестящие и зеркальные никелевые покрытия, получаемые непосредственно из электролитов с блескообразующими добавками. Состав электролита и режим никелирования:

Никель сернокислый - 280-300 г/л
Никель хлористый - 50-60 г/л
Кислота борная - 25-40 г/л
Сахарин 1-2 г/л
1,4-бутиндиол - 0,15-0,18 мл/л
Фталимид 0,02-0,04 г/л
рН = 4-4,8
Температура = 50-60°С
Плотность тока = 3-8 А/дм 2

Для получения блестящих никелевых покрытий используют также электролиты с другими блескообразующими добавками: хлорамина Б, пропаргилового спирта, бензосульфамида и др.
При нанесении блестящего покрытия необходимо интенсивное перемешивание электролита сжатым воздухом желательно в сочетании с качанием катодных штанг, а также непрерывная фильтрация электролита,
Электролит приготовляют следующим образом. В дистиллированной или деионизированной горячей (80-90°С) воде растворяют при перемешивании сернокислый и хлористый никель, борную кислоту. Доведенный водой до рабочего объема электролит подвергают химической и селективной очистке.

Для удаления меди и цинка электролит подкисляют серной кислотой до рН 2-3 завешивают катоды большой площади из рифленой стали и прорабатывают электролит в течение суток при температуре 50-60°С, перемешивая сжатым воздухом. Плотность тока 0,1-0,3 А/дм 2 . Затем рН раствора доводят до 5,0-5,5, после чего в него вводят перманганат калия (2 г/л) или 30%-ный раствор перекиси водорода (2 мл/л).
Раствор перемешивается в течение 30 мин, добавляют 3 г/л активированного угля, обработанного серной кислотой, и перемешивают электролит 3-4 с помощью сжатого воздуха. Раствор отстаивается 7-12 ч, затем фильтруется в рабочую ванну.

В очищенный электролит вводят блескообразователи: сахарин и 1,4-бутиндиол непосредственно, фталимид - предварительно растворив в небольшом количестве электролита, подогретого до 70-80° С. Доводят рН до требуемого значения и приступают к работе. Расход блескообразователей при корректировании электролита составляет: сахарин 0,01-0,012 г/(А.ч); 1,4-бутнндиол (35%-ный раствор) 0,7-0,8 мл/(А.ч); фталимид 0,003-0,005 г/(А.ч).

Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения приведены в Таблице 2.

Таблица 2. Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения

Дефект Причина дефекта Способ устранения

Недостаточный блеск покрытия

Мала концентрация блескообразователей Ввести блескообразователи
Не выдерживается заданная плотность тока и рН Отрегулировать плотность тока и рН

Темный цвет покрытия и/или темные пятна

В электролите имеются примеси тяжелых металлов Произвести селективную очистку электролита при низкой плотности тока
Питтинг Наличие в электролите примесей железа Очистить электролит и ввести антипиттинговую добавку
Недостаточное перемешивание Увеличить воздушное перемешивание
Низкая температура электролита Повысить температуру электролита
Хрупкие осадки Загрязнение электролита органическими соединениями Очистить электролит активированным углем
Пониженное содержание 1,4-бутиндиола Ввести добавку 1,4-бутиндиола

Многослойное никелирование применяется для повышения коррозионной стойкости никелевых покрытий по сравнению с однослойными покрытиями.
Это достигается последовательным осаждением слоев никеля из нескольких электролитов с различными физико-химическими свойствами покрытия. К многослойным никелевым покрытиям относятся: би-никель, три-никель, сил-никель.

Коррозионная стойкость покрытий би-никель в 1,5-2 паза выше однослойных покрытий. Их целесообразно применять вместо однослойных матовых и блестящих никелевых покрытий.

Для достижения высокой коррозионной стойкости первый слои никеля (матовый или полублестящий), составляющий не менее 1/2 - 2/3 общей толщины покрытия осажденный из стандартного электролита, практически не содержит серы. Второй слой никеля осаждают из электролита блестящего никелирования; сера, содержащаяся в органических блескообразователях, входит в состав никелевого покрытия, при этом электродный потенциал второго блестящего слоя сдвигается на 60-80 мВ в сторону электроотрицательных значений по отношению к первому слою. Таким образом, блестящий слои никеля становится анодом в гальванической паре и защищает первый слой от коррозии.

Трехслойное никелирование обладает самой высокой коррозионной стойкостью. При этом методе после осаждения первого слоя никеля из того же электролита, что и при двухслойном никелировании, осаждается средний слой никеля из электролита, в состав которого входит специальная серосодержащая добавка, обеспечивающая включение большого количества серы (0,15-0,20%) в состав промежуточного слоя никеля. Затем наносится третий верхний слой из электролита для получения блестящих покрытий. При этом промежуточный слой, приобретая самый электроотрицательный потенциал, предохраняет контактирующие с ним слои никеля от коррозии.

В автомобильной промышленности применяют двухслойное никелирование типа сил-никель. Первый слой никеля наносится из электролита блестящего никелирования. Затем детали переносят во второй электролит, где происходит осаждение сил-никеля. В состав этого электролита вводят токонепроводящий высокодисперсный порошок каолина в количестве 0,3-2,0 г/л. Температура 50-60°С, плотность тока 3-4 А/дм 2 . Процесс ведут без непрерывной фильтрации. Для обеспечения равномерного распределения частиц каолина по всему объему электролита применяют интенсивное воздушное перемешивание. Слой сил-никеля повышает износостойкость покрытия и обладает высокой коррозионной стойкостью.

Сил-никель применяют как последний слой перед хромом в защитно-декоративном покрытии. Вследствие высокой дисперсности инертных частиц тонкий слой сил-никеля (1-2 мкм) не меняет декоративного вида блестящей никелированной поверхности, а при последующем хромировании позволяет получить микропористый хром, что увеличивает коррозионную стойкость покрытия.

Снятие дефектных никелевых покрытий производится анодным растворением никеля в электролите, состоящем из серной кислоты, разбавленной до плотности 1,5-1,6.103 кг/м 3 . Температура 15-25°С, анодная плотность тока 2-5 А/дм 2 .

Наряду с электролитическим никелированием широко применяют процесс химического никелирования, основанный на восстановлении никеля из водных растворов с помощью химического восстановителя. В качестве восстановителя используют гипофосфит натрия.
Химическое никелирование применяют для покрытия никелем деталей любой конфигурации. Химически восстановленный никель обладает высокой коррозионной стойкостью, большой твердостью и износостойкостью, которые могут быть значительно повышены при термической обработке (после 10-15 мин нагрева при температуре 400°С твердость химически осажденного никеля повышается до 8000 МПа). При этом возрастает и прочность сцепления. Никелевые покрытия, восстановленные гипофосфитом, содержат до 15% фосфора. Восстановление никеля гипофосфитом протекает по реакции NiCl 2 + NaH 2 PO 2 + H 2 O → NaH 2 PO 3 + 2HCl + Ni.

Одновременно происходит гидролиз гппофосфита натрия. Степень полезного использования гппофосфита принимают около 40%.

Восстановление никеля из его солей гипофосфитом самопроизвольно начихается только на металлах группы железа, которые катализируют этот процесс. Для покрытия других каталитически неактивных металлов (например, меди, латуни) необходим контакт этих металлов в растворе с алюминием или другими более электроотрицательными, чем никель, металлами. Для этой цели используют активирование поверхности обработкой в растворе хлористого палладия (0,1-0,5 г/л) в течение 10-60 с. На некоторых металлах, таких, как свинец, олово, цинк, кадмий, никелевое покрытие не образуется даже при использовании методой контактирования и активирования.
Химическое осаждение никеля возможно как из щелочных, так и из кислых растворов. Щелочные растворы характеризуются высокой стабильностью и простотой корректировки. Состав раствора и режим никелирования:

Никель хлористый - 20-30 г/л
Натрия гипофосфит - 15-25 г/л
Натрий лимоннокислый - 30-50 г/л
Аммоний хлористый 30-40 г/л
Аммиак водный, 25-% - 70-100 мл/л
рН = 8-9
Температура = 80-90°С

Покрытия, полученные в кислых растворах, отличаются меньшей пористостью, чем из щелочных растворов (при толщине выше 12 мкм покрытия практически беспористые). Из кислых растворов химического никелирования рекомендуется следующий состав (г/л) и режим никелирования:

Никель сернокислый - 20-30 г/л
Натрий уксуснокислый - 10-20 г/л
Натрия гипофосфит - 20-25 г/л
Тиомочевина 0,03 г/л
Кислота уксусная (ледяная) - 6-10 мл/л
рН = 4,3-5,0
Температура = 85-95°С
Скорость осаждения = 10-15 мкм/ч

Химическое никелирование осуществляют в стеклянных, фарфоровых или железных эмалированных ваннах. В качестве материала подвесок применяют углеродистую сталь.
В последнее время химическим путем наносят покрытие сплава никель-бор с использованием в качестве восстановителя борсодержащих соединений — борогидрида натрия и диметилбората, которые обладают более высокой восстановительной способностью по сравнению с гипофосфитом.
Полученные покрытия сплавом никель-бор имеют высокую износостойкость и твердость.

Для оценки стоимости работ, просьба выслать запрос на электронную почту [email protected]
К запросу желательно приложить чертёж или эскиз изделий, а также указать количество деталей.

В разделе цен указана стоимость никелирования изделий

Никелирование, которое является достаточно распространенной технологической операцией, выполняют для того, чтобы нанести на поверхность металлического изделия тонкий слой никеля. Толщина такого слоя, величину которого можно регулировать, используя различные приемы, может варьироваться от 0,8 до 55 мкм.

Никелирование используется в качестве защитно-декоративного покрытия, а также для получения подслоя при хромировании

С помощью никелирования металла можно сформировать пленку, обеспечивающую надежную защиту от таких негативных явлений, как окисление, развитие коррозионных процессов, реакции, вызванные взаимодействием с соляной, щелочной и кислотной средами. В частности, очень большое распространение получили никелированные трубы, которые активно используются для производства изделий сантехнического назначения.

Чаще всего никелированию подвергаются:

  • изделия из металла, которые будут эксплуатироваться на открытом воздухе;
  • кузовные детали мото- и автотранспортных средств, в том числе и те, для изготовления которых был использован алюминиевый сплав;
  • оборудование и инструменты, применяемые в общей медицине и стоматологии;
  • изделия из металла, которые длительное время эксплуатируются в воде;
  • ограждающие конструкции, изготовленные из стали или алюминиевых сплавов;
  • изделия из металла, подвергающиеся воздействию сильных химических веществ.

Существует несколько используемых как в производственных, так и в домашних условиях методов никелирования металлических изделий. Наибольший интерес в практическом плане представляют способы никелирования металлических деталей, не требующие применения сложного технологического оборудования и реализуемые в домашних условиях. К таким способам относится электролитическое и химическое никелирование.

Электролитическое никелирование

Суть технологии электролитического никелирования металлических деталей, имеющей и другое название – «гальваническое никелирование», можно рассмотреть на примере того, как выполняется омеднение поверхности изделия из металла. Такую процедуру можно проводить как с применением электролитического раствора, так и без него.

Деталь, которая будет в дальнейшем обрабатываться в электролитическом растворе, подвергается тщательной обработке, для чего с ее поверхности при помощи наждачной бумаги удаляют оксидную пленку. Затем обрабатываемое изделие промывается в теплой воде и обрабатывается содовым раствором, после чего снова промывается водой.

Сам процесс никелирования выполняется в стеклянной емкости, в которую заливается водный раствор (электролит). В составе такого раствора содержится 20% медного купороса и 2% серной кислоты. Обрабатываемую деталь, на поверхность которой необходимо нанести тонкий слой меди, в растворе электролита помещают между двумя анодами из меди. Чтобы запустить процесс омеднения, на медные аноды и обрабатываемую деталь необходимо подать электрический ток, величину которого рассчитывают, исходя из показателя 10–15 мА на один квадратный сантиметр площади детали. Тонкий слой меди на поверхности изделия появляется уже через полчаса его нахождения в растворе электролита, причем такой слой будет тем толще, чем дольше будет протекать процесс.

Нанести медный слой на поверхность изделия можно и по другой технологии. Для этого необходимо изготовить кисточку из меди (можно использовать многожильный провод, предварительно сняв с него изоляционный слой). Такую кисточку, сделанную своими руками, надо зафиксировать на деревянной палочке, которая будет служить ручкой.

Изделие, поверхность которого предварительно зачищают и обезжиривают, помещают в емкость из диэлектрического материала и заливают электролитом, в качестве которого можно использовать насыщенный водный раствор медного купороса. Самодельную кисточку подключают к плюсовому контакту источника электрического тока, а обрабатываемую деталь – к его минусу. После этого приступают к процедуре омеднения. Заключается она в том, что кисточкой, которую предварительно обмакивают в электролит, проводят над поверхностью изделия, не прикасаясь к ней. Наносить покрытие, применяя такую методику, можно в несколько слоев, что позволит сформировать на поверхности изделия слой меди, на котором практически отсутствуют поры.

Электролитическое никелирование выполняется по схожей технологии: при его осуществлении тоже используется раствор электролита. Так же, как и в случае с омеднением, обрабатываемое изделие располагают между двумя анодами, только в данном случае они изготовлены из никеля. Аноды, помещенные в раствор для никелирования, подключаются к плюсовому контакту источника тока, а изделие, подвешенное между ними на металлической проволоке, – к минусовому.

Для осуществления никелирования, в том числе и выполняемого своими руками, используются электролитические растворы двух основных типов:

  • водный раствор, включающий в свой состав сернокислый никель, натрий и магний (14:5:3), 2% борной кислоты, 0,5% поваренной соли;
  • раствор на основе нейтральной воды, содержащий в своем составе 30% сульфата никеля, 4% хлорида никеля, 3% борной кислоты.

Электролит блестящего никелирования с добавкой органических блескообразователей (натриевых солей)

Выравнивающий электролит блестящего никелирования. Подходит для поверхностей с низким классом очистки

Чтобы приготовить электролитический раствор, сухую смесь из вышеуказанных элементов заливают одним литром нейтральной воды и тщательно перемешивают. Если в полученном растворе образовался осадок, от него избавляются. Только после этого раствор можно использовать для выполнения никелирования.

Обработка по данной технологии обычно длится полчаса, при этом используют источник тока с напряжением 5,8–6 В. Результатом является поверхность, покрытая неравномерным матовым цветом серого цвета. Чтобы она стала красивой и блестящей, необходимо ее зачистить и выполнить ее полировку. Следует иметь в виду, что такая технология не может быть использована для деталей, отличающихся высокой шероховатостью поверхности или имеющих узкие и глубокие отверстия. В таких случаях покрытие поверхности металлического изделия слоем никеля следует выполнять по химической технологии, которую также называют чернением.

Суть технологической операции чернения заключается в том, что на поверхность изделия сначала наносится промежуточное покрытие, основой которого может быть цинк или никель, а на верхней части такого покрытия формируется слой черного никеля толщиной не более 2 мкм. Покрытие никелем, выполненное по технологии чернения, смотрится очень красиво и обеспечивает надежную защиту металла от негативного воздействия различных факторов внешней среды.

В отдельных случаях металлическое изделие одновременно подвергают сразу двум технологическим операциям, таким как никелирование и хромирование.

Химическое никелирование

Процедуру химического никелирования изделий из металла выполняют по следующей схеме: обрабатываемую деталь на некоторое время погружают в кипящий раствор, в результате чего на ее поверхности оседают частички никеля. При применении такой технологии электрохимическое воздействие на металл, из которого изготовлена деталь, отсутствует.

Результатом использования такой технологии никелирования является формирование на поверхности обрабатываемой детали никелевого слоя, который прочно связан с основным металлом. Наибольшей эффективности такой способ никелирования позволяет добиться в тех случаях, когда с его помощью обрабатываются предметы, изготовленные из стальных сплавов.

Выполнять такое никелирование в домашних условиях или даже в условиях гаража нетрудно. При этом процедура никелирования проходит в несколько этапов.

  • Сухие реактивы, из которых будет приготовлен электролитический раствор, смешиваются с водой в эмалированной посуде.
  • Полученный раствор доводят до кипения, а затем в него добавляют гипофосфит натрия.
  • Изделие, которое необходимо подвергнуть обработке, помещают в электролитический раствор, причем делают это так, чтобы оно не касалось боковых стенок и дна емкости. Фактически надо изготовить бытовой аппарат для никелирования, конструкция которого будет состоять из эмалированной емкости соответствующего объема, а также диэлектрического кронштейна, на котором будет фиксироваться обрабатываемая деталь.
  • Продолжительность кипения электролитического раствора в зависимости от его химического состава может составлять от одного часа до трех.
  • После завершения технологической операции уже никелированная деталь извлекается из раствора. Затем ее промывают в воде, в составе которой содержится гашеная известь. После тщательной промывки поверхность изделия подвергается полированию.

Электролитические растворы для выполнения никелирования, которому можно подвергать не только сталь, но также латунь, алюминий и другие металлы, обязательно содержат в своем химическом составе следующие элементы – хлористый или сернокислый никель, гипофосфит натрия различной кислотности, какую-либо из кислот.

Чтобы увеличить скорость никелирования изделий из металла, в состав для выполнения этой технологической операции добавляют свинец. Как правило, в одном литре электролитического раствора выполняют никелевое покрытие поверхности, площадь которой составляет 20 см 2 . В электролитических растворах с более высокой кислотностью проводят никелирование изделий из черных металлов, а в щелочных обрабатывают латунь, осуществляют никелирование алюминия или деталей из нержавеющей стали.

Некоторые нюансы технологии

Выполняя никелирование латуни, изделий из стали различных марок и других металлов, следует учитывать некоторые нюансы этой технологической операции.

  • Пленка из никеля будет более устойчивой, если она нанесена на предварительно омедненную поверхность. Еще более устойчивой никелированная поверхность будет в том случае, если готовое изделие будет подвергнуто термической обработке, заключающейся в его выдержке при температуре, превышающей 450°.
  • Если никелированию подвергаются детали из закаленных сталей, то нагревать и выдерживать их можно при температуре, не превышающей 250–300°, иначе они могут утратить свою твердость.
  • При никелировании изделий, отличающихся большими размерами, возникает потребность в постоянном перемешивании и в регулярной фильтрации электролитического раствора. Такая сложность особенно характерна для процессов никелирования, выполняемых не в промышленных, а в домашних условиях.

По сходной с никелированием технологии можно покрыть латунь, сталь и другие металлы слоем серебра. Покрытие из данного металла наносят, в частности, на рыболовные снасти и изделия другого назначения, чтобы предотвратить их потускнение.

Процедура нанесения слоя серебра на сталь, латунь и другие металлы отличается от традиционного никелирования не только температурой проведения и временем выдержки, но также тем, что для нее применяют электролитический раствор определенного состава. При этом выполняют данную операцию в растворе, температура которого составляет 90°.