Центробежные насосы без двигателя с открытым валом Pedrollo серии FG. Принцип работы асинхронного электродвигателя с фазовым ротором

Цена: 163800.00 руб.

СД 800/32

Описание

Насос СД 800/32 (без двигателя) применяется в промышленности, ЖКХ, сельском хозяйстве для перекачивания канализационных и промышленных стоков. Такие насосы относятся к консольным центробежным типам и предназначены для перекачивания канализационных и других сильнозагрязненных жидкостей с t до +85С, плотностью не более 1020кг./м3 и удельным содержанием твердых частиц размером до 5мм не более 1%.

Принцип работы точно такой же, как и у всех консольных насосоврабочее колесо, раскручиваясь при помощи привода, создает центробежную силу, и жидкость под давлением выходит из напорного патрубка.

Патрубок насоса расположен в центре насосной части, в случае с насосами типа СМ, и сбоку – если насос типа СД. Простота конструкции насоса СМ позволяет ремонтировать насос не демонтируя насосный агрегат. В случае ремонта насоса СД без демонтажа уже не обойтись.

В насосах типа СДВ – буква В обозначает вертикальное исполнение насоса.

Фекально-канализационный насос СД 800/32 (без двигателя) комплектуется промышленным электродвигателем, с мощностью и скоростью вращения вала без двигателя кВт/об.мин, в качестве привода насоса. Электродвигатель соединен с насосом при помощи упругой муфты. Насос СДВ агрегатируется фланцевым трехфазным электродвигателем переменного тока вертикальном исполнении. Насосы могут комплектоваться сальниковыми или торцевыми уплотнениями.

Буквенно-цифровое обозначение:

СД 800/32 (без двигателя)

  • СД – сточно-динамический
  • 800 – подача, м3/час
  • 32.0 – напор, м
  • а – уменьшенный Ø рабочего колеса
  • 2 - полюсность электродвигателя
  • без двигателя - параметры электродвигателя, кВт/об.мин

Компактность конструкций, простота соединений с насосом, легкая автоматизация управления и относительно низкие эксплуатационные затраты предопределили массовое применение электродвигателей переменного тока в качестве привода для насосов систем водоснабжения и канализации.

К приводным электродвигателям насосных агрегатов помимо их большой мощности предъявляется ряд специфических требований. Одним из определяющих является необходимость пуска двигателей под нагрузкой. Конструкция электродвигателя должна также допускать довольно продолжительное вращение ротора в обратную сторону (с угонной скоростью, определяемой характеристикой насоса), вызываемое сливом воды из напорных трубопроводов после отключения электродвигателя от сети при плановой или аварийной остановке агрегата.

Весьма желательной для улучшения условий работы энергетических систем, где применяются мощные насосные станции, является возможность частых повторных пусков, что, в свою очередь, предъявляет повышенные требования к конструкциям обмотки статора и пусковой обмотки электродвигателя, нагревание которых определяет продолжительность требуемой паузы между пусками и допустимое число пусков за рассматриваемый период.

Энергоснабжение и электропривод рассматриваются в специальных курсах, поэтому в настоящем учебнике лишь кратко освещаются особенности приводных электродвигателей различных типов, в значительной мере определяющие конструкцию и размеры машинного здания насосной станции

Асинхронные электродвигатели. При работе этих двигателей частота вращения магнитного поля статора постоянна и зависит от частоты питающей сети (стандартная частота 50 Гц) и от числа пар полюсов, а частота вращения ротора отличается на величину скольжения, составляющую 0,012-0,06 скорости магнитного поля статора. Причиной исключительно широкого применения асинхронных электродвигателей является их простота и небольшая стоимость.

В зависимости от типа обмотки ротора различают асинхронные электродвигатели с короткозамкнутым или с фазным ротором

Короткозамкнутые асинхронные электродвигатели являются наиболее подходящим электроприводом для небольших насосов они значительно дешевле электродвигателей всех других типов и, что очень существенно, обслуживание их гораздо проще Пуск этих электродвигателей - прямой асинхронный, при этом не требуется каких-либо дополнительных устройств, что дает возможность значительно упростить схему автоматического управления агрегатами

Однако при прямом включении короткозамкнутых асинхронных электродвигателей очень высока кратность пускового тока, который для двигателей мощностью 0,6 - 100 кВт при п = 750Н-3000 мин"" в 5-7 раз выше номинального тока такой кратковременный толчок пускового тока относительно безопасен для двигателя, но вызывает резкое снижение напряжения в сети, что может неблагоприятно сказаться на других потребителях энергии, присоединенных к той же распределительной сети. По этим причинам допустимая номинальная мощность асинхронных электродвигателей с короткозамкнутым ротором, пускаемым прямым включением, зависит от мощности сети и в большинстве случаев ограничивается 100 кВт.

Асинхронные электродвигатели с фазным ротором имеют более сложную и дорогую конструкцию, так как обмотки ротора у них соединяются с наружным пусковым реостатом через три контактных кольца со скользящими по ним щетками

Перед пуском такого электродвигателя в цепь ротора с помощью реостата вводят дополнительное сопротивление, благодаря чему при включении электродвигателя уменьшается сила пускового тока по мере увеличения частоты вращения двигателя сопротивление постепенно уменьшается, а после того как электродвигатель достигнет частоты вращения, "близкой к нормальной, сопротивление пускового реостата целиком выводят, обмотки закорачивают и двигатель продолжает работать как короткозамкнутый

Для насосов с горизонтальным валом отечественной промышленностью в настоящее время выпускаются асинхронные электродвигатели с короткозамкнутым ротором единой серии 4А мощностью 0,06-400 кВт при д>3000 мин-1 и высоте оси вращения 50-355 мм. Электродвигатели мощностью 0,06-0,37 кВт изготовляются на напряжение 220 и 380 В; 0,55-11 кВт- на 220, 380 и 660 В; 15-110 кВт- на 220/380 и 380/660 В; 132-400 кВт- на 380/660 В.

Для привода вертикальных насосов выпускаются асинхронные электродвигатели с короткозамкнутым ротором серии ВАН мощностью 315-2500 кВт, напряжением 6 кВ и номинальной частотой вращения 375-1000 мин"1.

Изготовляются электродвигатели серии ВАН в вертикальном подвесном исполнении с подпятником и двумя направляющими подшипниками (один из которых расположен в верхней крестовине, другой - в нижней), с фланцевым концом вала для присоединения к насосу Вентиляция электродвигателя осуществляется по разомкнутому циклу напором воздуха, создаваемым вращающимся ротором и вентиляторами Холодный воздух поступает в машину снизу из фундаментной ямы через нижнюю крестовину и сверху через окна в верхней крестовине Нагретый воздух выбрасывается через отверстия в корпусе статора

Асинхронные электродвигатели основного исполнения имеют различные модификации, в частности: с повышенным пусковым моментом; с повышенными энергетическими показателями для насосных агрегатов с круглосуточной работой, при которой особое значение имеет повышение КПД; с фазным ротором, облегчающим условия пуска и т. п.

Отечественной промышленность J также выпускаются многоскоростные асинхронные электродвигатели, позволяющие изменением частоты вращения регулировать подачу и напор насоса, улучшая, тем самым, технико-экономические показатели насосной станции в целом. Так, например, двухскоростные электродвигатели серии ДВДА имеют интервал значений мощности от 500/315 до 1600/1000 кВт. Эти электродвигатели переводятся с одной частоты вращения на другое отключение одной обмотки статора с последующим включением другой.

Синхронные электродвигатели переменного тока применяются для привода мощных насосов, характеризуемых большой продолжительностью работы. Частота вращения синхронных электродвигателей связана постоянным отношением с частой сети переменного тока, в которую эта машина включена: ря=:3000 (где р - число пар полюсов; п - частота вращения)

Ротор синхронной машины отличается от ротора асинхронной наличием рабочей обмотки для создания постоянного магнитного поля, взаимодействующего с вращающимся магнитным полем статора Рабочая обмотка ротора запитывается постоянным током от возбудителя, которым может служить либо генератор постоянного тока, либо тиристорный возбудитель Генератор постоянного тока может располагаться отдельно от электродвигателя или крепиться на валу ротора

Во втором случае генератор выполняется с самовозбуждением тиристорный возбудитель всегда располагается отдельно от электродвигателя

Основные преимущества синхронного электродвигателя перед асинхронным следующие:

    синхронный электродвигатель может работать с коэффициентом мощности (coscp), равным единице и даже опережающим, что улучшает коэффициент мощности сети и, следовательно,

    экономит электроэнергию,

  • при колебаниях напряжения в сети синхронный электродвигатель работает более устойчиво, допуская кратковременное снижение напряжения до 0,6 номинального.

Основным недостатком синхронных электродвигателей является то, что момент на их валу при пуске равен нулю, поэтому их необходимо раскручивать тем или иным способом до скорости, близкой к синхронной для этой цели большинство современных синхронных электродвигателей имеет в роторе дополнительную пусковую короткозамкнутую обмотку, аналогичную обмотке ротора асинхронного двигателя

Для насосов с горизонтальным валом используют синхронные двигатели общего применения серий СД2, СДН-2, СДНЗ-2 и СДЗ различных типоразмеров, имеющие большой диапазон мощности (132-4000 кВт) и частоты вращения (100-1500 мин-1) при напряжении 380-6000 В.

Для привода вертикальных насосов изготовляются две серии синхронных двигателей трехфазного тока частотой 50 Гц, мощностью 630-12 500 кВт, напряжением 6 и 10 кВ, с опережающим cos ф = 0,9, позволяющим получить от двигателя при работе его в номинальном режиме реактивную мощность в пределах до 40% номинальной. Первая серия двигателей ВСДН 15-17-го габаритов включает машины с параметрами: N=6304-3200 кВт, п = 375-=-750 мин-1. Вторая серия электродвигателей ВДС 18-20-го габаритов включает машины больших мощностей (N=4000-=-12 500 кВт) и меньших частот вращения (п = 2504-375 мин"1).

Серийно выпускаемый вертикальный синхронный электродвигатель серии ВДС (8.3) имеет статор цилиндрической формы, активная сталь которого набрана пакетами из листовой стали и закреплена в станине стяжными шпильками. Ротор двигателя выполнен из литой стали. Полюсы прикреплены к ободу болтами. В верхней крестовине размещены подпятник, верхний направляющий подшипник и маслоохладитель. Эта крестовина является грузонесущей и воспринимает вес всех вращающихся частей агрегата и давление воды на рабочее колесо насоса. В нижней крестовине двигателя установлен нижний направляющий подшипник. Возбудитель двигателя (в данном случае генератор постоянного тока с самовозбуждением) вместе с контактными кольцами насажен на отдельный вал, который имеет фланцевое соединение с валом двигателя. В случае отдельно стоящих возбудителей на валу электродвигателя устанавливаются кольца, с помощью которых возбудитель соединяется с обмотками ротора. Двигатель имеет проточную вентиляцию. Двигатели этого типа мощностью свыше 4000 кВт выполняются с замкнутой системой вентиляции и охлаждением воздуха с помощью охладителей.

Обозначение электродвигателей этого типа включает данные об их габаритах. Так, например, марка двигателя, изображенного на 8.3, означает: вертикальный (В) двигатель (Д) синхронного типа (С) с диаметром расточки статора 325 см, длиной сердечника статора 44 см и числом полюсов 2р=16.

Напряжение приводного двигателя принимают в зависимости от его мощности и напряжения сети энергосистемы, к которой подключена насосная станция.

Если питание насосной станции осуществляется от энергосети напряжением 3,6 или 10 кВ и мощность электродвигателей превышает 250 кВт, то следует устанавливать двигатели на том же напряжении. В этом случае отпадает необходимость сооружения понизительной трансформа-горной подстанции и, следовательно, уменьшаются затраты по сооружению насосной станции. Напряжение электродвигателей мощностью 200-250 кВт определяется схемой электропитания и условиями перспективного увеличения их мощности. Электродвигатели мощностью до 200 кВт следует принимать низковольтными, напряжением 220, 380 и реже 500 В.

В зависимости от особенностей среды производственных помещений водопроводных и канализационных насосных станций в них устанавливают электродвигатели в том или ином конструктивном исполнении.

Электродвигатели, устанавливаемые в помещениях с нормальной средой, обычно принимают в защищенном исполнении. Электродвигатели, устанавливаемые на открытом воздухе, следует принимать в закрытом исполнении, для низких температур - во влагоморозостойком. При установке приводных электродвигателей в особо сырых местах их принимают в капле- или брызгозащищенном исполнении с влагостойкой изоляцией. Исполнение электродвигателей, устанавливаемых во взрывоопасных помещениях, должно приниматься в соответствии с Правилами устройств электроустановок (ПУЭ).

ООО "СЗЭМО "Электродвигатель" поставляет широкий спектр электродвигателей для насосного оборудования российского и зарубежного производства: герметичные, погружные, для водоснабжения, для жидкостей с посторонними включениями, для нефтепродуктов, для химической промышленности, насосы для поддержания пластового давления в скважине, нефтяные магистральные насосы, насосы для энергетической промышленности, насосы типа Д, КсВ, ПЭ, АВз, ЭЦВ.

Для правильного подбора электродвигателя для насосного оборудования просим сообщить нам полные характеристики насоса, включая: перекачиваемую среду, ее температуру, расход, напор, место установки, специфические особенности установки, варианты исполнения двигателя. В разделе "Контакты " нашего интернет ресурса Вы сможете оставить заявку на поставку электродвигателя для насосного оборудования и насосных станций. Мы постараемся в кратчайшее время подобрать необходимое Вам оборудование и подготовить технико-коммерческого предложения на поставку.

Центробежные насосы с электродвигателем, в отличие от обычных конструкций, представляют собой устройства, состоящие из двух основных узлов: центробежного лопастного насоса и электродвигателя. Так же как и все центробежные насосы, они преобразуют механическую энергию, поступающую от двигателя, в энергию для создания потока жидкости, которая обеспечивает ее движение и в системе напор.
Как монтируется электроцентробежный насос в системе своими руками, предлагается узнать из статьи.

Как работает центробежный насос с электродвигателем

На схеме, представленной ниже, показано устройство внутренней части и соединение его с электродвигателем.
В корпусе, поз. 1, который имеет вид улитки, заключено рабочее колесо, на нем расположены лопасти. Эти элементы находятся на валу электродвигателя. Всасывающий и напорный трубопроводы присоединяются к нагнетательному и приемному отверстиям.
Вода, которая заполняет насос, под действием центробежной силы, возникающей от вращения рабочего колеса его лопастями, выбрасывается в напорный трубопровод из корпуса. При оборотах рабочего колеса создается разрежение во всасывающем патрубке устройства, за счет этого во всасывающий трубопровод непрерывно поступает вода.

Совет: Центробежные насосы могут работать лишь при заполнении рабочего колеса, а значит и всасывающего трубопровода, водой. Поэтому, для удержания воды внутри насоса, если он остановлен, на конце трубопровода для всасывания необходимо установить приемное устройство, имеющее обратный клапан.

Если насос электроцентробежный в работу запускается впервые после завершения монтажных работ или ремонта, необходимо в его корпус предварительно залить воду. При этом нужно следить, чтобы не было образования воздушных пробок.
Основные показатели работы насосов являются:

  • Производительность.
  • Напор.

Выбирая насосы центробежные с электродвигателем нужно обращать внимание, что его производительность должна соответствовать часовому расходу жидкости в системе, а напор должен быть достаточным для подъема воды на нужную высоту, и смог преодолеть сопротивление трубопроводов и арматуры.

Почему возникают вибрации центробежного насоса

Часто при эксплуатации центробежных насосных агрегатов возникает проблема вибрации, когда в качестве привода берутся электродвигатели. Существует несколько способов, как правильно и достаточно быстро установить эту причину.

Совет: Повышенная вибрация сильно уменьшает надежность оборудования. В этом случае у насоса и мотора могут подшипниковые узлы выйти из строя, к тому же у электродвигателя могут появиться изгиб или даже излом вала, в торцовой крышке или в станине статора возможно появление трещины.
От вибрации у насосного агрегата могут получить повреждения опорная рама и фундамент. Все это требует своевременного устранения вибраций агрегата.

Вибрации возможны, если:

  • Была нарушена инструкция по эксплуатации насоса.
  • Произведена неправильно центровка насоса и электродвигателя.
  • Плохое качество изготовления соединительной муфты, износе ее элементов:
  1. пальцев;
  2. отсутствие соосности отверстий под пальцы;
  3. отсутствие соосности полумуфт.
  • Дисбаланс колеса или ротора, приводного насоса. Такой дефект особенно часто встречается у насосов, имеющих высокую частоту вращения или у насосов, где плохо отбалансировано .
  • Дисбаланс ротора электродвигателя.
  • Установлены дефектные подшипники в насосе или электродвигателе.
  • Несоблюдение технологии изготовления фундамента и основания для агрегата.
  • Получил изгиб вал.
  • Ослабилась фиксация отдельных элементов насоса и электродвигателя: торцовых крышек, подшипников.

В каждой инструкции по эксплуатации центробежного насоса указывается о проведении пробного пуска электромотора, который должен быть отсоединен от насоса, чтобы определить направление вращения. Здесь необходимо обратить внимание: нет ли вибрации электродвигателя при холостом ходе.

Совет: Если в момент пуска электродвигатель и на холостом ходу работает без вибрации, тогда причины этого процесса следует искать: в неправильной центровке; в изношенных пальцах или самих полумуфт; присутствии дисбаланса в подсоединенном насосе.

Итак:

  • Если вибрация существует на холостом ходу, причиной ее является неисправность самого двигателя. В этом случае следует проверить, останется ли вибрация непосредственно после отключения агрегата от сети.
  • Если после отключения напряжения вибрация сразу же исчезла, это указывает, что имеется неравномерный зазор между ротором и статором.
  • При пуске сильная вибрация на холостом ходу может указывать на неравномерный зазор, обрыв в обмотке ротора стержня.
  • Если при отсоединении двигателя от насоса, после отключения от сети вибрация пропадает не сразу, а постепенно снижается по мере уменьшения числа оборотов, то причина кроется в дисбалансе ротора.
  • Легко обнаруживается вибрация, возникающая от износа или дефектов подшипников электродвигателя. Неисправный подшипник начинает сильно шуметь и греться.

В случае отсутствия вибрации электродвигателя на холостом ходу необходимо:

  • Проверить есть ли центровка насоса с электродвигателем и состояние соединительной муфты.
  • Проверяется соответствие режима эксплуатации насоса паспортным характеристикам.

Чаще всего в этом случае имеются две причины вибрации:

  • Насос эксплуатируется вне рабочей зоны, указанной в паспорте. Для проверки характеристик используется манометр, и замеряются им показания на выходе напора из насоса, и, при необходимости, производится регулировка задвижкой на напорном трубопроводе.
  • Насос эксплуатируется в режиме кавитации: причинами в этом случае могут быть: не полностью открыта задвижка; засорение всасывающего трубопровода. Проверка производится замером показаний вакуумметра на всасывающем трубопроводе, а затем полученные величины сравниваются с паспортными данными.

Как обеспечить соосность насосного агрегата

Совет: Надежность и долговечность работы насосного агрегата зависит от соосности вала насоса и электродвигателя: их оси в пространстве должны располагаться на одной прямой.

Даже при четком соблюдении технологии изготовления и сборки всех деталей и узлов агрегата не всегда выдерживается соосность при агрегировании. Поэтому существует необходимость центрировать валы насоса и электродвигателя.
Эту операцию выполняют на общей плите, регулировкой их положения с помощью прокладок. Завод-изготовитель эту работу выполняет перед отправкой заказчику агрегированных насосов.
Однако центровка может быть нарушена:

  • При транспортировке.
  • При деформации фундаментной плиты, изготовленной небольшой толщины.
  • От старения металла.
  • При неравномерном прилегании плиты агрегата к фундаменту.

На рис. 1 приведена схема отклонения от соосности валов.

  • Смещение в горизонтальной плоскости. Оси остаются параллельными.
  • Смещение в вертикальной плоскости. Оси скрещиваются.

В обоих случаях, при превышении определенных значений величин, агрегат работает ненормально:

  • Появляется шум.
  • Возникает вибрация.
  • Увеличивается потребляемая мощность.
  • Перегреваются подшипники.
  • Греется муфта.

Детали электродвигателя и насоса при таких отклонениях изнашиваются намного быстрее обычного. Быстроходность и масса вращающихся деталей влияют на величину допустимых отклонений от соосности валов. Чем выше цена агрегата, тем более жесткие требования должны предъявляться к соосности.
Определение соосности валов показано на фото.

Центровка валов насоса и электродвигателя должна производиться с соблюдением следующих основных положений:

  • В агрегатах с редуктором основным элементом является редуктор. Его устанавливают, выверяют правильность монтажа и фиксируют штифтами.
  • Электродвигатель, насос и гидромуфту центруют по редуктору.
  • В устройствах с гидромуфтой насос и электрический двигатель центруют по гидромуфте, перед этим ее предварительно выверяют, затем крепят и фиксируют.
  • В агрегатах, где отсутствует редуктор, центровку производят по насосу, предварительно выверенному и закрепленному.
  • Центровку агрегата без общей плиты, производят в два этапа:
  1. предварительно: перед заливкой болтов для фундамента;
  2. окончательно: после фиксации насоса к фундаменту.
  • Центрировать агрегат, имеющий общую фундаментную плиту, необходимо производить после ее выверки, подливки и затяжки болтов, фиксирующих фундамент.
  • Валы насосного агрегата окончательно центруют после присоединения трубопроводов к нему.

Как выполняется центрирование валов насоса и электродвигателя хорошо показано на видео в этой статье.

Гидрочасть центробежных насосов.

Насосы Pedrollo серии FG: мастера большой мощности

Центробежные насосы Pedrollo серии FG – настоящие чемпионы. Их подача достигает 6000 л/мин! Благодаря такой производительности эта модель нашла применение во всех сферах жизни – от орошения загородных участков и повышения давления до антипожарных установок и систем циркуляции.

Как они устроены?

Корпус Pedrollo FG изготовлен из чугуна с антикоррозийным покрытием. Они не имеют двигателя и работают по принципу центробежной силы. Их главная «рабочая деталь» - рабочее колесо, закрепленное на открытом рабочем валу. Оно осуществляет перемещение жидкости, поступающей через всасывающую решетку, от центра к периферии. Лопасти колеса придают потоку ускорение, дополнительную энергию и напор на выходе. Это существенно повышает рабочие характеристики насосов Pedrollo серии FG.

9 причин купить насосы Pedrollo серии FG

  1. Эта модель расходует мало энергии, однако ее мощности хватает и для сельского хозяйства, и для промышленности, и для систем безопасности.
  2. Pedrollo FG не производят шума.
  3. Центробежные насосы Pedrollo серии FG применяют для неагрессивных жидкостей, в том числе и для чистой воды, которую можно употреблять в кулинарных целях.
  4. Небольшие размеры насоса позволяют установить его даже в темном и неудобном пространстве.
  5. Насосы Pedrollo серии FG относятся к самым термостойким вариантам компании – они выдерживают температуру до +90°C.
  6. Вся продукция фирмы-производителя отличается удивительной устойчивостью к агрессивной среде. Она не ржавеет, не окисляется, не разрушается от химических реакций и не боится механического воздействия. Единственное «но» - большинство из насосов боится атмосферного воздействия, и серия FG не исключение.
  7. С управлением насосом справится даже человек, редко имеющий дело с техникой.
  8. Купить насосы Pedrollo серии FG может даже человек со скромными средствами. Согласитесь, обидно отказывать себе в полезных вещах только из-за финансовой черной полосы. Создатели модели учли это и предложили на редкость демократичные цены.
  9. Сегодня все больше клиентов стремятся приобрести этот насос. Неудивительно – с таким высоким КПД и удобством в эксплуатации он выручит вас практически во всех ситуациях. Непременно!

class="gadget">