Возрастание, убывание и экстремумы функции. Возрастание и убывание функции на интервале, экстремумы

>> Экстремумы

Экстремум функции

Определение экстремума

Функция y = f (x ) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f (x 1) < f (x 2) (f (x 1) > f (x 2)).

Если дифференцируемая функция y = f (x ) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x ) > 0

(f " (x ) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f (x ), если существует окрестность точки x о , для всех точек которой верно неравенство f (x ) ≤ f (x о ) (f (x ) f (x о )).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f (x ), то либо f " (x о ) = 0, либо f (x о ) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x ) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f (x ) имеет
f "
(x ) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о ) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f (x ). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие .

На отрезке функция y = f (x ) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22.

Решение. Так как f " (

Задачи на нахождения экстремума функции

Пример 3.23. a

Решение. x и y y
0
x
> 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции кв . ед ).

Пример 3.24. p ≈

Решение. p p
S "

R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f (x ) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x ) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f (2) = 14 и минимум f (3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy . Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a . Поэтому y = a - 2x и S = x (a - 2x), где
0
x a /2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2 × a/4 =a/2. Поскольку x = a /4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x a /4 S " > 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв . ед ). Поскольку S непрерывна на и ее значения на концах S(0) и S(a /2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16 p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2 p R(R+Н). Мы знаем объем цилиндра V = p R 2 Н Þ Н = V/ p R 2 =16 p / p R 2 = 16/ R 2 . Значит, S(R) = 2 p (R 2 +16/R). Находим производную этой функции:
S "
(R) = 2 p (2R- 16/R 2) = 4 p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

Введение

Во многих областях науки и в практической деятельности часто приходится сталкиваться с задачами поиска экстремума функции. Дело в том, что многие технические, экономические и т.д. процессы моделируются функцией или несколькими функциями, зависящими от переменных – факторов, влияющих на состояние моделируемого явления. Требуется найти экстремумы таких функций для того, чтобы определить оптимальное (рациональное) состояние, управление процессом. Так в экономике, часто решаются задачи минимизации издержек или максимизации прибыли – микроэкономическая задача фирмы. В этой работе мы не рассматриваем вопросы моделирования, а рассматриваем только алгоритмы поиска экстремумов функций в простейшем варианте, когда на переменные не накладываются ограничения (безусловная оптимизация), и экстремум ищется только для одной целевой функции.


ЭКСТРЕМУМЫ ФУНКЦИИ

Рассмотрим график непрерывной функции y=f(x) , изображенной на рисунке. Значение функции в точке x 1 будет больше значений функции во всех соседних точках как слева, так и справа от x 1 . В этом случае говорят, что функция имеет в точке x 1 максимум. В точке x 3 функция, очевидно, также имеет максимум. Если рассмотреть точку x 2 , то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x 2 минимум. Аналогично для точки x 4 .

Функция y=f(x) в точке x 0 имеет максимум , если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x 0 , т.е. если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) <f(x 0 ) .

Функция y=f(x) имеет минимум в точке x 0 , если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) >f(x 0 .

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка.

Отмети, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x 1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x 1 . В частности, f (x 1) < f (x 4) т.е. минимум функции больше максимума. Из определения максимума следует только, что это самое большое значение функции в точках, достаточно близких к точке максимума.

Теорема 1. (Необходимое условие существования экстремума.) Если дифференцируемая функция y=f(x) имеет в точке x= x 0 экстремум, то ее производная в этой точке обращается в нуль.

Доказательство . Пусть для определенности в точке x 0 функция имеет максимум. Тогда при достаточно малых приращениях Δx имеем f(x 0 + Δx) 0 ) , т.е.

Но тогда

Переходя в этих неравенствах к пределу при Δx → 0 и учитывая, что производная f "(x 0) существует, а следовательно предел, стоящий слева, не зависит от того как Δx → 0, получаем: при Δx → 0 – 0 f" (x 0) ≥ 0 а при Δx → 0 + 0 f" (x 0) ≤ 0. Так как f " (x 0) определяет число, то эти два неравенства совместны только в том случае, когда f " (x 0) = 0.

Доказанная теорема утверждает, что точки максимума и минимума могут находиться только среди тех значений аргумента, при которых производная обращается в нуль.

Мы рассмотрели случай, когда функция во всех точках некоторого отрезка имеет производную. Как же обстоит дело в тех случаях, когда производная не существует? Рассмотрим примеры.

y =|x |.

Функция не имеет производной в точке x =0 (в этой точке график функции не имеет определенной касательной), но в этой точке функция имеет минимум, так как y (0)=0, а при всех x ≠ 0y > 0.

не имеет производной при x =0, так как обращается в бесконечность приx =0. Но в этой точке функция имеет максимум. не имеет производной при x =0, так как при x →0. В этой точке функция не имеет ни максимума, ни минимума. Действительно, f(x) =0 и при x <0f(x) <0, а при x >0f(x) >0.

Таким образом, из приведенных примеров и сформулированной теоремы видно, что функция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует.

Однако, если в некоторой точке x 0 мы знаем, что f "(x 0 ) =0, то отсюда нельзя делать вывод, что в точке x 0 функция имеет экстремум.

Например.

.

Но точка x =0 не является точкой экстремума, поскольку слева от этой точки значения функции расположены ниже оси Ox , а справа выше.

Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками .

Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

Теорема 2. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x 0 , и дифференцируема во всех точках этого интервала (кроме, быть может, самой точки x 0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x = x 0 функция имеет максимум. Если же при переходе через x 0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.

Таким образом, если

f "(x) >0 при x <x 0 и f "(x)< 0 при x> x 0 , то x 0 – точка максимума;

при x <x 0 и f "(x)> 0 при x> x 0 , то x 0 – точка минимума.

Доказательство . Предположим сначала, что при переходе через x 0 производная меняет знак с плюса на минус, т.е. при всех x , близких к точке x 0 f "(x)> 0 для x< x 0 , f "(x)< 0 для x> x 0 . Применим теорему Лагранжа к разности f(x) - f(x 0 ) = f "(c)(x- x 0), где c лежит между x и x 0 .

Пусть x < x 0 . Тогда c< x 0 и f "(c)> 0. Поэтомуf "(c)(x- x 0)< 0и, следовательно,

f(x) - f(x 0 )< 0,т.е. f(x)< f(x 0 ).

Пусть x > x 0 . Тогда c> x 0 и f "(c)< 0. Значитf "(c)(x- x 0)< 0. Поэтому f(x) - f(x 0 ) <0,т.е.f(x) < f(x 0 ) .

Таким образом, для всех значений x достаточно близких к x 0 f(x) < f(x 0 ) . А это значит, что в точке x 0 функция имеет максимум.

Аналогично доказывается вторая часть теоремы о минимуме.

Проиллюстрируем смысл этой теоремы на рисунке. Пусть f "(x 1 ) =0 и для любых x, достаточно близких к x 1 , выполняются неравенства

f "(x)< 0 при x< x 1 , f "(x)> 0 при x> x 1 .

Тогда слева от точки x 1 функция возрастает, а справа убывает, следовательно, при x = x 1 функция переходит от возрастания к убыванию, то есть имеет максимум.

Аналогично можно рассматривать точки x 2 и x 3 .


Схематически все вышесказанное можно изобразить на картинке:

Правило исследования функции y=f(x) на экстремум

Найти область определения функции f(x).

Найти первую производную функции f "(x) .

Определить критические точки, для этого:

найти действительные корни уравнения f "(x) =0;

найти все значения x при которых производная f "(x) не существует.

Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.

Вычислить значение функции в точках экстремума.

Важным понятием в математике является функция. С её помощью можно наглядно представить многие процессы, происходящие в природе, отразить с использованием формул, таблиц и изображений на графике взаимосвязь между определёнными величинами. Примером может служить зависимость давления слоя жидкости на тело от глубины погружения, ускорения - от действия на объект определённой силы, увеличения температуры - от передаваемой энергии и многие другие процессы. Исследование функции предполагает построение графика, выяснение её свойств, области определения и значений, промежутков возрастания и убывания. Важным моментом в данном процессе является нахождение точек экстремума. О том, как правильно это делать, и пойдёт разговор далее.

О самом понятии на конкретном примере

В медицине построение графика функции может рассказать о ходе развития болезни в организме пациента, наглядно отражая его состояние. Предположим, по оси ОХ откладывается время в сутках, а по оси ОУ - температура тела человека. На рисунке хорошо видно, как этот показатель резко поднимается, а потом падает. Нетрудно заметить также особые точки, отражающие моменты, когда функция, ранее возрастая, начинает убывать, и наоборот. Это точки экстремума, то есть критические значения (максимальные и минимальные) в данном случае температуры больного, после которых наступают изменения в его состоянии.

Угол наклона

Легко можно определить по рисунку, как изменяется производная функции. Если прямые линии графика с течением времени идут вверх, то она положительна. И чем они круче, тем большее значение принимает производная, так как растет угол наклона. В периоды убывания эта величина принимает отрицательные значения, в точках экстремума обращаясь в ноль, а график производной в последнем случае рисуется параллельно оси ОХ.

Любой другой процесс следует рассматривать аналогичным образом. Но лучше всего об этом понятии может рассказать перемещение различных тел, наглядно показанное на графиках.

Движение

Предположим, некоторый объект движется по прямой, равномерно набирая скорость. В этот период изменение координаты тела графически представляет собой некую кривую, которую математик назвал бы ветвью параболы. При этом функция постоянно возрастает, так как показатели координаты с каждой секундой изменяются всё быстрей. График скорости демонстрирует поведение производной, значение которой также увеличивается. А значит, движение не имеет критических точек.

Так бы и продолжалось бесконечно долго. Но если тело вдруг решит затормозить, остановиться и начать двигаться в другом направлении? В данном случае показатели координаты начнут уменьшаться. А функция перейдёт критическое значение и из возрастающей превратится в убывающую.

На этом примере снова можно понять, что точки экстремума на графике функции появляются в моменты, когда она перестаёт быть монотонной.

Физический смысл производной

Описанное ранее наглядно показало, что производная по сути является скоростью изменения функции. В данном уточнении и заключён её физический смысл. Точки экстремума - это критические области на графике. Их возможно выяснить и обнаружить, вычислив значение производной, которая оказывается равной нулю.

Существует и другой признак, который является достаточным условием экстремума. Производная в таких местах перегиба меняет свой знак: с «+» на «-» в области максимума и с «-» на «+» в районе минимума.

Движение под влиянием силы притяжения

Представим ещё одну ситуацию. Дети, играя в мяч, бросили его таким образом, что он начал двигаться под углом к горизонту. В начальный момент скорость данного объекта являлась самой большой, но под действием силы тяжести начала уменьшаться, причём с каждой секундой на одну и ту же величину, равную приблизительно 9,8 м/с 2 . Это значение ускорения, возникающего под влиянием земной гравитации при свободном падении. На Луне оно бы было примерно в шесть раз меньше.

Графиком, описывающим перемещение тела, является парабола с ветвями, направленными вниз. Как найти точки экстремума? В данном случае это вершина функции, где скорость тела (мяча) принимает нулевое значение. Производная функции становится равной нулю. При этом направление, а следовательно, и значение скорости, меняется на противоположное. Тело летит вниз с каждой секундой всё быстрее, причём ускоряется на ту же величину - 9,8 м/с 2 .

Вторая производная

В предыдущем случае график модуля скорости рисуется как прямая. Данная линия оказывается сначала направлена вниз, так как значение этой величины постоянно убывает. Достигнув нуля в один из моментов времени, далее показатели этой величины начинают возрастать, а направление графического изображения модуля скорости кардинально меняется. Теперь линия направлена вверх.

Скорость, являясь производной от координаты по времени, тоже имеет критическую точку. В этой области функция, вначале убывая, начинает возрастать. Это место точки экстремума производной функции. В данном случае угол наклона касательной становится равным нулю. А ускорение, являясь второй производной от координаты по времени, меняет знак с «-» на «+». И движение из равнозамедленного становится равноускоренным.

График ускорения

Теперь рассмотрим четыре рисунка. На каждом из них отображён график изменения с течением времени такой физической величины, как ускорение. В случае «А» значение его остаётся положительным и постоянным. Это означает, что скорость тела, как и его координата, постоянно увеличивается. Если представить, что объект будет двигаться таким образом бесконечно долго, функция, отражающая зависимость координаты от времени, окажется постоянно возрастающей. Из этого следует, что она не имеет критических областей. Точки экстремума на графике производной, то есть линейно изменяющейся скорости, также отсутствуют.

То же касается и случая «Б» с положительным и постоянно увеличивающимся ускорением. Правда, графики для координаты и скорости здесь будут несколько сложнее.

Когда ускорение стремится к нулю

Рассматривая рисунок «В», можно наблюдать совсем другую картину, характеризующую движение тела. Скорость его графически будет изображаться параболой с ветвями, направленными вниз. Если продолжить линию, описывающую изменение ускорения до пересечения её с осью ОХ, и дальше, то можно представить, что до этого критического значения, где ускорение окажется равным нулю, скорость объекта будет увеличиваться всё медленнее. Точка экстремума производной от функции координаты окажется как раз в вершине параболы, после чего тело кардинально поменяет характер движения и начнёт двигаться в другом направлении.

В последнем случае, «Г», характер движения точно определить невозможно. Здесь известно только, что ускорение за некоторый рассматриваемый период отсутствует. Значит, объект может оставаться на месте или движение происходит с постоянной скоростью.

Задача на сложение координат

Перейдём к заданиям, которые часто встречаются при изучении алгебры в школе и предлагаются для подготовки к ЕГЭ. На рисунке, который представлен ниже, изображён график функции. Требуется вычислить сумму точек экстремума.

Сделаем это для оси ординат, определив координаты критических областей, где наблюдается изменение характеристик функции. Проще говоря, найдём значения по оси ОХ для точек перегиба, а затем перейдём к сложению полученных членов. По графику очевидно, что они принимают следующие значения: -8; -7 ; -5; -3; -2; 1; 3. В сумме это составляет -21, что и является ответом.

Оптимальное решение

Не стоит объяснять, насколько может оказаться важным в выполнении практических заданий выбор оптимального решения. Ведь путей достижения цели бывает много, а наилучший выход, как правило, - всего один. Это бывает крайне необходимо, к примеру, при конструировании судов, космических кораблей и самолётов, архитектурных сооружений для нахождения оптимальной формы данных рукотворных объектов.

Быстроходность средств передвижения во многом зависит от грамотного сведения к минимуму сопротивления, которое они испытывают при перемещении по воде и воздуху, от перегрузок, возникающих под действием гравитационных сил и многих других показателей. Кораблю на море необходимы такие качества, как устойчивость во время шторма, для речного судна важна минимальная осадка. При расчётах оптимальной конструкции точки экстремума на графике наглядно могут дать представление о наилучшем решении сложной проблемы. Задачи такого плана часто решаются в экономике, в хозяйственных областях, во множестве других жизненных ситуаций.

Из античной истории

Задачи на экстремум занимали даже древних мудрецов. Греческие учёные с успехом разгадали тайну площадей и объёмов путём математических вычислений. Это они первыми поняли, что на плоскости из разнообразных фигур, обладающих одним и тем же периметром, наибольшую площадь всегда имеет круг. Аналогичным образом шар наделён максимальным объёмом среди остальных предметов в пространстве с одинаковой величиной поверхности. Решению подобных задач посвятили себя такие известнейшие личности, как Архимед, Евклид, Аристотель, Аполлоний. Найти точки экстремума прекрасно удавалось Герону, который, прибегнув к расчётам, сооружал хитроумные устройства. К ним относились автоматы, перемещающиеся посредством пара, работающие по тому же принципу насосы и турбины.

Строительство Карфагена

Существует легенда, сюжет которой построен на решении одной из экстремальных задач. Результатом делового подхода, который продемонстрировала финикийская царевна, обратившаяся за помощью к мудрецам, стало строительство Карфагена. Земельный участок для этого древнего и прославленного города подарил Дидоне (так звали правительницу) вождь одного из африканских племён. Площадь надела не показалась ему вначале очень большой, так как по договору должна была покрываться воловьей шкурой. Но царевна повелела своим воинам разрезать её на тонкие полосы и составить из них ремень. Он получился настолько длинным, что охватил участок, где уместился целый город.

Истоки математического анализа

А теперь перенесёмся из античных времён в более позднюю эпоху. Интересно, что к осознанию основ математического анализа подтолкнула Кеплера в XVII веке встреча с продавцом вина. Торговец был настолько сведущ в своей профессии, что легко мог определить объём находящегося в бочке напитка, просто опуская туда железный жгут. Размышляя над подобным курьёзом, знаменитый учёный сумел решить для себя эту дилемму. Оказывается, искусные бочары тех времён наловчились изготавливать сосуды таким образом, чтобы при определённой высоте и радиусе окружности скрепляющих колец они имели максимальную вместимость.

Это стало для Кеплера поводом для дальнейших размышлений. Бочары пришли к оптимальному решению методом долгого поиска, ошибок и новых попыток, передавая свой опыт из поколения в поколение. Но Кеплер хотел ускорить процесс и научиться делать то же самое в короткий срок путём математических вычислений. Все его наработки, подхваченные коллегами, превратились в известные ныне теоремы Ферма и Ньютона - Лейбница.

Задача на нахождение максимальной площади

Представим, что мы имеем проволоку, длина которой равна 50 см. Как составить из неё прямоугольник, обладающий наибольшей площадью?

Начиная решение, следует исходить из простых и известных любому истин. Понятно, что периметр нашей фигуры будет составлять 50 см. Он же складывается из удвоенных длин обеих сторон. Это значит, что, обозначив за «Х» одну из них, другую возможно выразить как (25 - Х).

Отсюда получаем площадь, равную Х(25 - Х). Данное выражение можно представить как функцию, принимающую множество значений. Решение задачи требует найти максимальное из них, а значит, следует узнать точки экстремума.

Для этого находим первую производную и приравниваем её нулю. В результате получается простое уравнение: 25 - 2Х = 0.

Из него мы узнаём, что одна из сторон Х = 12,5.

Следовательно, другая: 25 - 12,5 = 12,5.

Получается, что решением задачи будет квадрат со стороной 12,5 см.

Как найти максимальную скорость

Рассмотрим ещё один пример. Представим, что существует тело, прямолинейное движение которого описывается уравнением S = - t 3 + 9t 2 - 24t - 8, где пройденное расстояние выражается в метрах, а время в секундах. Требуется найти максимальную скорость. Как это сделать? Скачала находим скорость, то есть первую производную.

Получаем уравнение: V = - 3t 2 + 18t - 24. Теперь для решения задачи снова нужно найти точки экстремума. Сделать это необходимо тем же способом, что и в предыдущей задаче. Находим первую производную от скорости и приравниваем её к нулю.

Получаем: - 6t + 18 = 0. Отсюда t = 3 с. Это время, когда скорость тела принимает критическое значение. Подставляем полученное данное в уравнение скорости и получаем: V = 3 м/с.

Но как понять, что это именно максимальная скорость, ведь критическими точками функции могут быть наибольшие или наименьшие её значения? Для проверки необходимо найти вторую производную от скорости. Она выражается числом 6 со знаком минус. Это значит, что найденная точка является максимумом. А в случае положительного значения второй производной был бы минимум. Значит, найденное решение оказалось правильным.

Приведённые в качестве примера задачи являются лишь частью из тех, которые возможно решить, умея находить точки экстремума функции. На самом деле их гораздо больше. А подобные знания открывают перед человеческой цивилизацией неограниченные возможности.

Определение 1. Точка М(x 0 ; у 0) называется точкой максимума (минимума) функции z = f(x; y), если существует окрестность точки М, такая, что для всех точек (x; y) из этой окрестности выполняется неравенство:

f(x 0 ; y 0)  f(x; y), .

Теорема 1 (необходимое условие существования экстремума) . Если дифференцируемая функция z = f(x; y) достигает экстремума в точке М(x 0 ; y 0), то ее частные производные первого порядка в этой точке равны нулю, т.е.
;

Точки, в которых частные производные равны нулю, называются стационарными иликритическими точками.

Теорема 2 (достаточное условие существования экстремума)

Пусть функция z = f(x; y):

а) определена в некоторой окрестности точки (x 0 ; y 0), в которой
и
;

б) имеет в этой точке непрерывные частные производные второго порядка

;

Тогда, если  = АС  B 2 > 0, то в точке (x 0 ; y 0) функция z = f(x; y) имеет экстремум, причем, если А < 0 (или С < 0) – максимум, если А > 0 (или С > 0) – минимум. В случае  = АС  В 2 < 0, функция z = f(x; y) экстремума не имеет. Если  = AC  B 2 = 0, то требуется дальнейшее исследование (сомнительный случай).

Пример 1. Найти экстремум функции z = x 2 + xy + y 2  3x  6y.

Решение . Найдем частные производные первого порядка:


Воспользуемся необходимым условием существования экстремума:


Решая систему уравнений, находим координаты x и y стационарных точек: x = 0; y = 3, т. е. М(0; 3).

Вычислим частные производные второго порядка и найдем их значения в точке М.

А =
= 2; С =
= 2;

В =
.

Составим дискриминант  = АС  В 2 = 2  2  1 > 0, A = 2 > 0. Следовательно, в точке М(0; 3) заданная функция имеет минимум. Значение функции в этой точке z min = 9.

Найти экстремумы функций

322. z = x 2 + y 2 + xy  4x  5y 323. z = y 3  x 3  3xy

324. z = x 2  2xy + 4y 3 325. z =
 y 2  x + 6y

326. z = x y (1  x  y) 327. z = 2xy  4x  2y

328. z = e  x/2 (x + y 2) 329. z = x 3 + 8y 3  6xy + 1

330. z = 3x 2 y  x 3  y 4 331. z = 3x + 6y  x 2  xy + y 2

Наибольшее и наименьшее значения функции двух переменных в замкнутой области

Для того, чтобы найти наибольшее и наименьшее значения функции в замкнутой области, надо:

1) найти критические точки, расположенные в данной области, и вычислить значения функции в этих точках;

2) найти критические точки на границе области и вычислить наибольшее и наименьшее значения функций в них;

3) из всех найденных значений выбрать наибольшее и наименьшее.

Пример 2. Найти наибольшее и наименьшее значения функции z =
в круге x 2 + y 2  1.

Решение . Найдем координаты критических точек, расположенных внутри рассматриваемой области, для чего вычислим частные производные первого порядка функции z и приравняем их к нулю.


откуда x = 0, y = 0 и, следовательно, М(0; 0) – критическая точка.

Вычислим значение функции z в точке М(0; 0): z(0; 0) = 2.

Найдем критические точки на границе области  окружности, заданной уравнением x 2 + y 2 = 1. Подставляя у 2 = 1  x 2 в функцию z = z(x; y), получим функцию одной переменной

z =
;

причем x[1; 1].

Вычислив производную
и приравняв ее нулю, получим критические точки на границе области x 1 = 0, x 2 =, x 3 =

Найдем значение функции z(x) =
в критических точках и на концах отрезка [1; 1]: z(0) = ;
=;
; z(1) = ; z(1) =

Выберем наибольшее и наименьшее среди значений функции z в критических точках, расположенных внутри и на границе круга.

Итак, z наиб. = z(0; 0) = 2

Это довольно-таки занятный раздел математики, с которым сталкиваются абсолютно все ученики выпускных классов и студенты. Тем не менее далеко не каждому нравится матан. Некоторые не могут понять даже элементарных вещей наподобие, казалось бы, стандартного исследования функции. Данная статья призвана исправить подобную оплошность. Хотите поподробнее узнать об анализе функции? Желаете узнать, что такое точки экстремума и как их найти? Тогда данная статья для вас.

Исследование графика функции

Для начала стоит понять, зачем вообще необходимо анализировать график. Существуют простые функции, начертить которые не составит труда. Ярким примером подобной функции может служить парабола. Начертить ее график не составит труда. Все что необходимо, так это с помощью простого преобразования найти числа, при которых функция принимает значение 0. И в принципе это все что знать для того, чтобы начертить график параболы.

Но что делать, если функция, график которой нам нужно начертить, намного сложнее? Поскольку свойства сложных функций довольно-таки неочевидны, необходимо проводить целый анализ. Только после этого можно изобразить функцию графически. Как же это сделать? Ответ на этот вопрос вы сможете найти в данной статье.

План анализа функции

Первое, что необходимо сделать, так это провести поверхностное исследование функции, в ходе которого мы найдем область определения. Итак, начнем по порядку. Область определения - это совокупность тех значений, которыми функция задается. Проще говоря, это те числа, которые можно использовать в функции вместо х. Для того чтобы определить область определения, необходимо просто взглянуть на запись. К примеру, очевидно, что у функции у (х) = х 3 + х 2 - х + 43 область определения - множество действительных чисел. Ну а с функцией наподобие (х 2 - 2х)/х все немного иначе. Поскольку число в знаменателе не должно равняться 0, то областью определения данной функции будут все действительные числа, помимо нуля.

Далее необходимо найти так называемые нули функции. Это те значения аргумента, при которых вся функция принимает значения ноль. Для этого необходимо приравнять функцию к нулю, подробно ее рассмотреть и совершить некоторые преобразования. Возьмём уже знакомую нам функцию у(х) = (х 2 - 2х)/х. Из школьного курса мы знаем, что дробь равна 0 тогда, когда числитель равен нулю. Поэтому знаменатель мы отбрасываем и начинаем работать с числителем, приравнивая его к нулю. Получаем х 2 - 2х = 0 и выносим х за скобочки. Отсюда х (х - 2) = 0. В итоге получаем, что наша функция равна нулю тогда, когда х равняется 0 или же 2.

Во время исследования графика функции многие сталкиваются с проблемой в виде точек экстремума. И это странно. Ведь экстремумы - это довольно-таки простая тема. Не верите? Убедитесь сами, прочитав данную часть статьи, в которой мы поговорим о точках минимума и максимума.

Для начала стоит разобраться в том, что собой представляет экстремум. Экстремум - это предельное значений, которое достигает функция на графике. Отсюда получается, что существует два крайних значения - максимум и минимум. Для наглядности можно посмотреть на картинку, что расположена выше. На исследованной области точка -1 является максимумом функции у (х) = х 5 - 5х, а точка 1, соответственно, минимумом.

Также не стоит путать между собой понятия. Точки экстремума функции - это те аргументы, при которых заданная функция приобретает крайние значения. В свою очередь, экстремумом называют значение минимумов и максимумов функции. К примеру, вновь рассмотрим рисунок выше. -1 и 1 - это точки экстремума функции, а 4 и -4 - это сами экстремумы.

Нахождение точек экстремума

Но как все-таки найти точки экстремума функции? Все довольно-таки просто. Первое, что необходимо сделать - найти производную уравнения. Допустим, мы получили задание: "Найдите точки экстремума функции y (x), x - аргумент. Для наглядности возьмем функцию у (х) = х 3 + 2х 2 + х + 54. Проведем дифференцирование и получим следующее уравнение: 3х 2 + 4х + 1. В итоге мы получили стандартное квадратное уравнение. Все, что необходимо сделать дальше - приравнять его к нулю и найти корни. Поскольку дискриминант больше нуля (D = 16 - 12 = 4), данное уравнение определяется двумя корнями. Находим их и получаем два значения: 1/3 и -1. Это и будут точки экстремума функции. Однако как все-таки определить, кто есть кто? Какая точка является максимумом, а какая минимумом? Для этого нужно взять соседнюю точку и узнать ее значение. К примеру, возьмем число -2, которое находится слева по координатной прямой от -1. Подставляем это значение в наше уравнение у(-2) = 12 - 8 + 1 = 5. В итоге мы получили положительное число. Это значит, что на промежутке от 1/3 до -1 функция возрастает. Это, в свою очередь, обозначает, что на промежутках от минус бесконечности до 1/3 и от -1 до плюс бесконечности функция убывает. Таким образом, можно сделать вывод, что число 1/3 - точка минимума функции на исследованном промежутке, а -1 - точка максимума.

Также стоит отметить, что на ЕГЭ требуют не просто найти точки экстремума, Но и провести с ними какую-то операцию (прибавить, умножить и т.д.). Именно по этой причине стоит обратить особое внимание на условия задачи. Ведь из-за невнимательности можно потерять баллы.