Окисление алкенов в нейтральной среде при нагревании. Алкены – это углеводороды, в молекулах которых есть одна двойная с=с связь

Составление уравнений окислительно-восстановительных реакций с участием органических веществ

В связи с введением в качестве единственной формы итоговой аттестации выпускников средней школы единого государственного экзамена (ЕГЭ) и переходом старшей школы на профильное обучение все большую актуальность приобретает подготовка старшеклассников к выполнению наиболее “дорогих” в балльном отношении заданий части “С” теста ЕГЭ по химии. Несмотря на то, что пять заданий части “С” считаются разными: химические свойства неорганических веществ, цепочки превращений органических соединений, расчетные задачи, – все они в той или иной мере связаны именно с окислительно-восстановительными реакциями (ОВР). Если усвоены основные знания теории ОВР, то можно правильно выполнить первое и второе задания полностью, а третье – частично. На наш взгляд, значительная часть успеха при выполнении части “С” заключается именно в этом. Опыт показывает, что если, изучая неорганическую химию, ученики достаточно хорошо справляются с заданиями по написанию уравнений ОВР, то аналогичные задания по органической химии вызывают у них большие трудности. Поэтому на протяжении изучения всего курса органической химии в профильных классах мы стараемся сформировать у старшеклассников навыки составления уравнений ОВР.

При изучении сравнительной характеристики неорганических и органических соединений мы знакомим учащихся с использованием степени окисления (с.о.) (в органической химии прежде всего углерода) и способами ее определения:

1) вычисление средней с.о. углерода в молекуле органического вещества;

2) определение с.о. каждого атома углерода.

Уточняем, в каких случаях лучше использовать тот или иной способ.

Статья опубликована при поддержке компании "ГЕО-Инжиниринг", представляющей на рынке продукцию под брендом "ProfKresla". Сфера деятельности компании - производство, продажа и установка кресел и стульев для различных залов. Высокий профессионализм сотрудников и собственные производственные мощности позволяют быстро и качественно реализовывать проекты любой степени сложности. Всю продукцию под брендом "ProfKresla", будь тоТеатральные кресла , сидения для залов ожидания или стулья для учебных заведений, отличают современный и эргономичный дизайн, а также высокая износостойкость, прочность и комфорт. Из огромного ассортимента продукции, представленного в каталоге на сайте profkresla.ru, Вы всегда сможете подобрать модели, наилучшим образом соответствующие корпоративному стилю, принятому в Вашей компании. Если же у Вас все-таки возникнут трудности с выбором, то специалисты компании всегда готовы дать консультацию, помочь определиться с моделью, после чего подготовить проект, на месте произвести все необходимые замеры и установку.

П ри изучении темы “Алканы” показываем, что процессы окисления, горения, галогенирования, нитрования, дегидрирования, разложения относятся к окислительно-восстановительным процессам. При написании уравнений реакций горения и разложения органических веществ лучше использовать среднее значение с.о. углерода. Например:

Обращаем внимание на первую половину электронного баланса: у атома углерода в дробном значении с.о. знаменатель равен 4, поэтому расчет передачи электронов ведем по этому коэффициенту.

В остальных случаях при изучении темы “Алканы” определяем значения с.о. каждого атома углерода в соединении, обращая при этом внимание учащихся на последовательность замещения атомов водорода у первичных, вторичных, третичных атомов углерода:

Таким образом мы подводим учащихся к выводу, что в начале протекает процесс замещения у третичных, затем – у вторичных, и, в последнюю очередь – у первичных атомов углерода.

П ри изучении темы “Алкены” рассматриваем процессы окисления в зависимости от строения алкена и среды протекания реакции.

При окислении алкенов концентрированным раствором перманганата калия KMnO 4 в кислой среде (жесткое окисление) происходит разрыв - и -связей с образованием карбоновых кислот, кетонов и оксида углерода(IV). Эта реакция используется для определения положения двойной связи.

Если двойная связь находится на конце молекулы (например, у бутена-1), то одним из продуктов окисления является муравьиная кислота, легко окисляющаяся до углекислого газа и воды:

Подчеркиваем, что если в молекуле алкена атом углерода при двойной связи содержит два углеродных заместителя (например, в молекуле 2-метилбутена-2), то при его окислении происходит образование кетона, т. к. превращение такого атома в атом карбоксильной группы невозможно без разрыва C–C-связи, относительно устойчивой в этих условиях:

Уточняем, что если молекула алкена симметрична и двойная связь содержится в середине молекулы, то при окислении образуется только одна кислота:

Сообщаем, что особенностью окисления алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, является образование двух кетонов:

Рассматривая окисление алкенов в нейтральной или слабощелочной средах, акцентируем внимание старшеклассников на том, что в таких условиях окисление сопровождается образованием диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам углерода, между которыми существовала двойная связь:

В аналогичном плане рассматриваем окисление ацетилена и его гомологов в зависимости от того, в какой среде протекает процесс. Так, уточняем, что в кислой среде процесс окисления сопровождается образованием карбоновых кислот:

Реакция используется для определения строения алкинов по продуктам окисления:

В нейтральной и слабощелочной средах окисление ацетилена сопровождается образованием соответствующих оксалатов (солей щавелевой кислоты), а окисление гомологов – разрывом тройной связи и образованием солей карбоновых кислот:

В се правила отрабатываются с учащимися на конкретных примерах, что приводит к лучшему усвоению ими теоретического материала. Поэтому при изучении окисления аренов в различных средах ученики могут самостоятельно высказать предположения, что в кислой среде следует ожидать образования кислот, а в щелочной – солей. Учителю останется только уточнить, какие продукты реакции образуются в зависимости от строения соответствующего арена.

Показываем на примерах, что гомологи бензола с одной боковой цепью (независимо от ее длины) окисляются сильным окислителем до бензойной кислоты по -углеродному атому. Гомологи бензола при нагревании окисляются перманганатом калия в нейтральной среде с образованием калиевых солей ароматических кислот.

5C 6 H 5 –CH 3 + 6KMnO 4 + 9H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O,

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 = 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O,

C 6 H 5 –CH 3 + 2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O.

Подчеркиваем, что если в молекуле арена несколько боковых цепей, то в кислой среде каждая из них окисляется по a-углеродному атому до карбоксильной группы, в результате чего образуются многоосновные ароматические кислоты:

П олученные навыки составления уравнений ОВР для углеводородов позволяют использовать их при изучении раздела “Кислородсодержащие соединения”.

Так, при изучении темы “Спирты” учащиеся самостоятельно составляют уравнения окисления спиртов, используя следующие правила:

1) первичные спирты окисляются до альдегидов

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O;

2) вторичные спирты окисляются до кетонов

3) для третичных спиртов реакция окисления не характерна.

В целях подготовки к ЕГЭ учителю целесообразно дать дополнительные сведения к указанным свойствам, что, несомненно, будет полезным для учащихся.

При окислении метанола подкисленным раствором перманганата калия или дихромата калия образуется CO 2 , первичные спирты при окислении в зависимости от условий протекания реакции могут образовать не только альдегиды, но и кислоты. Например, окисление этанола дихроматом калия на холоду заканчивается oбразованием уксусной кислоты, а при нагревании – ацетальдегида:

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 = 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O,

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O.

Вновь напомним учащимся о влиянии среды на продукты реакций окисления спиртов, а именно: горячий нейтральный раствор KMnO 4 окисляет метанол до карбоната калия, а остальные спирты – до солей соответствующих карбоновых кислот:

При изучении темы “Альдегиды и кетоны” акцентируем внимание учащихся на том, что альдегиды легче, чем спирты, окисляются в соответствующие карбоновые кислоты не только под действием сильных окислителей (кислород воздуха, подкисленные растворы KMnO 4 и K 2 Cr 2 O 7), но и под действием слабых (аммиачный раствор оксида серебра или гидроксида меди(II)):

5CH 3 –CHO + 2KMnO 4 + 3H 2 SO 4 = 5CH 3 –COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O,

3CH 3 –CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –COOH + Cr 2 (SO 4) 3 + K 2 SO 4 + 4H 2 O,

CH 3 –CHO + 2OH CH 3 –COONH 4 + 2Ag + 3NH 3 + H 2 O.

Особое внимание уделяем окислению метаналя аммиачным раствором оксида серебра, т.к. в этом случае образуется карбонат аммония, а не муравьиная кислота:

HCHО + 4OH = (NH 4) 2 CO 3 + 4Ag + 6NH 3 + 2H 2 O.

Как показывает наш многолетний опыт, предложенная методика обучения старшеклассников составлению уравнений ОВР с участием органических веществ повышает их итоговый результат ЕГЭ по химии на несколько баллов.

4.5. Окисление алкенов

Реакции окисления алкенов целесообразно подразделить на две большие группы: реакции, в которых сохраняется углеродный скелет и реакции окислительной деструкции углеродного скелета молекулы по двойной связи. К первой группе реакций относятся эпоксидирование, а также гидроксилирование, приводящее к образованию вицинальных диолов (гликолей). В случае циклических алкенов при гидроксилировании образуются вицинальные транс - или цис -диолы. Другая группа включает озонолиз и реакции исчерпывающего окисления алкенов, приводящие к образованию различного рода карбонильных соединений и карбоновых кислот.

4.5.а. Реакции окисления алкенов с сохранением углеродного скелета

1. Эпоксидирование (реакция Н.А. Прилежаева, 1909 г)

Ациклические и циклические алкены при взаимодействии с перкислотами (надкислотами) RCOOOH в неполярной, индифферентной среде образуют эпоксиды (оксираны), поэтому сама реакция носит название реакции эпоксидирования.

Согласно современной номенклатуре ИЮПАК - трехчленный цикл с одним атомом кислорода носит название оксиран.

Эпоксидирование алкенов следует рассматривать как синхронный, согласованный процесс, в котором не участвуют ионные интермедиаты типа гидроксильного катиона ОН+ . Другими словами, эпоксидирование алкенов представляет собой процесс син -присоединения одного атома кислорода по двойной связи с полным сохранением конфигурации заместителей при двойной связи.

Для эпоксидирования был предложен механизм, характерный для согласованных процессов.

Т. к. атака двойной связи атомом кислорода надкислоты равновероятна с обеих сторон плоскости двойной связи, образующиеся оксираны представляют собой либо мезо -формы, либо смеси энантиомеров. В качестве эпоксидирующих агентов используются следующие перкислоты: пербензойная, м -хлорпербензойная, моноперфталевая, перуксусная, трифторперуксусная и пермуравьиная. Перкислоты ароматического ряда применяют в виде индивидуальных реагентов, тогда как перкислоты алифатического ряда - СН 3 СО 3 Н, CF 3 CO 3 H и НСО 3 Н не выделяют в индивидуальном виде, а используют после их образования при взаимодействии 30% или 90%-ного пероксида водорода и соответствующей карбоновой кислоты. Пербензойную и м -хлорпербензойную кислоты получают окислением соответственно бензойной и м -хлорбензойной кислот 70%-ной перекисью водорода в растворе метансульфокислоты или из хлорангидридов этих кислот и перекиси водорода.

Моноперфталевую кислоту получают подобным методом из фталевого ангидрида и 30%-ной перекиси водорода.

Первоначально для получения оксиранов (эпоксидов) использовались пербензойная или моноперфталевая кислоты:

В настоящее время для эпоксидирования чаще всего используют м -хлорпербензойную кислоту. В отличие от других перкислот она стабильна при хранении в течение длительного времени (до 1 года) и абсолютно безопасна при обращении. Выходы оксиранов, полученных при окислении ациклических и циклических алкенов м -хлорпербензойной кислотой в растворе хлористого метилена, хлороформа или диоксана, обычно довольно высоки.

Перкислоты часто генерируют прямо в реакционной смеси из 90% перекиси водорода и карбоновой кислоты в хлористом метилене.

Алкены с двойной связью, сопряженной с карбонильной группой или другим акцепторным заместителем, малоактивны и для их окисления лучше использовать более сильные окислители, такие как трифторперуксусная кислота, получаемая из ангидрида трифторуксусной кислоты и 90%-ной перекиси водорода в хлористом метилене. Простейший оксиран - окись этилена получают в промышленности окислением этилена кислородом в присутствии серебра, как катализатора.

2. анти -Гидроксилирование

Трехчленное кольцо оксиранов легко раскрывается под действием самых разнообразных нуклеофильных реагентов. Эти реакции подробно будут обсуждаться в разделе, посвященном ациклическим и циклическим простым эфирам. Здесь же будет рассматриваться только гидролиз оксиранов. Гидролиз оксиранов катализируется как кислотами, так и основаниями. В обоих случаях образуются вицинальные диолы, т. е. гликоли. При кислотном катализе в первой стадии происходит протонирование атома кислорода оксирана с образованием циклического оксониевого катиона, который раскрывается в результате нуклеофильной атаки молекулы воды:

Ключевой стадией в раскрытии кольца, определяющей скорость всего процесса, является нуклеофильная атака водой на протонированную форму оксирана. С точки зрения механизма этот процесс аналогичен раскрытию бромониевого иона при нуклеофильной атаке бромид-иона или другого нуклеофильного агента. С этих позиций стереохимическим результатом должно быть образование транс -гликолей при расщеплении циклических эпоксидов. Действительно, при кислотно-катализируемом гидролизе циклогексеноксида или циклопентеноксида образуются исключительно транс -1,2-диолы.

Таким образом, двухстадийный процесс эпоксидирования алкена с последующим кислотным гидролизом эпоксида суммарно соответствует реакции анти -гидроксилирования алкенов.

Обе стадии анти -гидроксилирования алкенов можно совместить, если алкен обрабатывать водной 30-70%-ной перекисью водорода в муравьиной или трифторуксусной кислоте. Обе эти кислоты являются достаточно сильными для того, чтобы вызвать раскрытие оксиранового цикла.

Раскрытие оксиранового кольца, катализируемое основанием, также приводит к образованию циклических транс -гликолей.

Следовательно, двухстадийный процесс эпоксидирования алкенов с последующим щелочным гидролизом эпоксидов также является реакцией анти -гидроксилирования алкенов.

3. син -Гидроксилирование

Некоторые соли и оксиды переходных металлов в высших степенях окисления являются эффективными реагентами син -гидроксилирования двойной связи алкена, когда обе гидроксильные группы присоединяются с одной и той же стороны двойной связи. Окисление алкенов перманганатом калия - один из старейших методов син -гидроксилирования двойной связи - продолжает широко использоваться, несмотря на свойственные ему ограничения. Цис -1,2-циклогександиол был впервые получен В.В. Марковниковым в 1878 году гидроксилированием циклогексена водным раствором перманганата калия при 0 0 С.

Этот метод в дальнейшем получил развитие в работах русского ученого Е.Е. Вагнера, поэтому син -гидроксилирование алкенов под действием водного раствора перманганата калия носит название реакции Вагнера. Перманганат калия является сильным окислителем, способным не только гидроксилировать двойную связь, но и расщеплять образующийся вицинальный диол. Для того, чтобы по возможности избежать дальнейшего расщепления гликолей, необходимо тщательно контролировать условия реакции. Выходы гликолей при этом обычно невелики (30-60%). Наилучшие результаты достигаются при гидроксилировании алкенов в слабощелочной среде (рН~8 9) при 0-5 0 С разбавленным 1%-ным водным раствором KMnO 4 .

Первоначально при окислении алкенов перманганатом калия образуется циклический эфир марганцевой кислоты, который немедленно гидролизуется до вицинального диола.

Циклический эфир марганцевой кислоты как интермедиат не был выделен, однако его образование следует из экспериментов с меченым 18 О перманганатом калия: оба атома кислорода в гликоле оказываются мечеными при окислении алкена KMn 18 O 4 . Это означает, что оба атома кислорода переходят от окислителя, а не из растворителя - воды, что находится в хорошем соответствии с предлагаемым механизмом.

Другой метод син -гидроксилирования алкенов под действием оксида осмия (VIII) OsO 4 был предложен Р. Криге в 1936 году. Тетраоксид осмия представляет собой бесцветное, летучее, кристаллическое вещество, хорошо растворимое в эфире, диоксане, пиридине и др. органических растворителях. При взаимодействии тетраоксида осмия с алкенами в эфире или диоксане образуется черный осадок циклического эфира осмиевой кислоты - осмат, который легко может быть изолирован в индивидуальном виде. Присоединение OsO 4 к двойной связи заметно ускоряется в растворе в пиридине. Разложение осматов до вицинальных гликолей достигается действием водного раствора гидросульфита натрия или сероводородом.

Выходы продуктов син -гидроксилирования алкенов в этом методе значительно выше, чем при использовании перманганата в качестве окислителя. Важным достоинством метода Криге является отсутствие продуктов окислительного расщепления алкенов, характерного для перманганатного окисления.

Тетраоксид осмия очень дорогой и труднодоступный реагент, к тому же он токсичен. Поэтому оксид осмия (VIII) используется при синтезе малых количеств трудно доступных веществ с целью получения наиболее высокого выхода диола. С целью упрощения син -гидроксилирования алкенов под действием OsO 4 была разработана методика, позволяющая использовать лишь каталитические количества этого реагента. Гидроксилирование алкенов осуществляется с помощью перекиси водорода в присутствии OsO 4 , например:

В заключение этого раздела приведем стереохимические отношения между алкеном цис - или транс -конфигурации и конфигурацией образующегося вицинального диола, который может быть цис - или транс -изомером, эритро - или трео -формой, мезо - или D,L -формой в зависимости от заместителей в алкене:

Аналогичные стереохимические отношения наблюдаются и в других реакциях син - или анти -присоединения по кратной связи водорода, галогенводородов, воды, галогенов, гидридов бора и др. реагентов.

Данный материал может быть сложен в освоении при самостоятельном обучении, ввиду большого объема информации, многих нюансов, всевозможных НО и ЕСЛИ. Читать внимательно!

О чем именно пойдет речь?

Помимо полного окисления (горения), для некоторых классов органических соединений характерны реакции неполного окисления, при этом они превращаются в другие классы.

Существуют специфические окислители для каждых классов: CuO(для спиртов),Cu(OH) 2 и OH (для альдегидов) и другие.

Но есть два классических окислителя, которые, если так можно выразиться, универсальные для многих классов.

Это перманганат калия – KMnO 4 . И бихромат (дихромат) калия – K 2 Cr 2 O 7 . Эти вещества являются сильными окислителями за счет марганца в степени окисления +7, и хрома в степени окисления +6, соответственно.

Реакции с этими окислителями встречаются довольно часто, однако нигде нет целостного руководства, по какому принципу выбирать продукты таких реакций.

На практике действует очень много факторов, влияющих на ход реакции (температура, среда, концентрация реагентов и т.д.). Часто получается смесь продуктов. Поэтому предугадать продукт, который образуется практически невозможно.

А для ЕГЭ это не годится: там нельзя написать «может быть или так, или вот так, или иначе, или смесь продуктов». Там нужна конкретика.

Составители заданий вложили определенную логику, определенный принцип по которому следует писать определенный продукт. К сожалению, они ни с кем не поделились.

Данный вопрос в большинстве пособий довольно скользко обходится стороной: в качестве примера приведено две-три реакции.

Представляю в этой статье, то, что можно назвать результатами исследования-анализа заданий ЕГЭ. Логика и принципы составления реакций окисления перманганатом и дихроматом разгадана довольно с высокой точностью (в соответствии со стандартами ЕГЭ). Обо всем по порядку.

Определение степени окисления .

Первое, когда имеем дело с окислительно-восстановительными реакциями, всегда есть окислитель и восстановитель.

Окислителем является марганец в перманганате или хром в дихромате, восстановителем – атомы в органике (а именно – атомы углерода).

Мало определить продукты, реакция должна быть уравнена. Для уравнивания традиционно используют метод электронного баланса. Для применения этого метода необходимо определить степени окисления восстановителей и окислителей до и после реакции.

У неорганических веществ степени окисления умеем с 9 класса:

А вот в органике, наверное, в 9 классе не определяли. Поэтому прежде, чем научиться писать ОВР в органической химии, нужно научиться определять степень окисления углерода в органических веществах. Делается это немного по-другому, иначе чем в неорганической химии.

У углерода максимальная степень окисления +4, минимальная -4. И он может проявлять любую степень окисления этого промежутка: -4, -3, -2, -1, 0, +1, +2, +3, +4.

Для начала нужно вспомнить, что такое степень окисления.

Степень окисления – это условный заряд, возникающий на атоме, при допущении, что электронные пары смещаются полностью в сторону более электроотрицательного атома.

Поэтому степень окисления определяется числом смещенных электронных пар: если она смещается к данному атому, то он приобретает избыточный минус(-) заряд, если от атома, то он приобретает избыточный плюс(+) заряд. В принципе это вся теория, которую нужно знать, для определения степени окисления атома углерода.

Для определения степени окисления конкретного атому углерода в соединении нам нужно рассмотреть КАЖДУЮ его связь и посмотреть в какую сторону будет смещаться электронная пара и какой избыточный заряд (+ или -) будет от этого возникать на атоме углерода.

Разберем конкретные примеры:

У углерода три связи с водородом . Углерод и водород – кто более электроотрицателен? Углерод, значит, по этим трем связям электронная пара будет смещаться в сторону углерода. Углерод забирает у каждого водорода по одному отрицательному заряду: получается -3

Четвертая связь с хлором. Углерод и хлор – кто более электроотрицателен? Хлор, значит, по этой связи электронная пара будет смещаться в сторону хлора. У углерода появляется один положительный заряд +1.

Затем, нужно просто сложить: -3 + 1 = -2. Степень окисления этого атома углерода: -2.

Определим степень окисления каждого атома углерода:

У углерода три связи с водородом. Углерод и водород – кто более электроотрицателен? Углерод, значит, по этим трем связям электронная пара будет смещаться в сторону углерода. Углерод забирает у каждого водорода по одному отрицательному заряду: получается -3

И еще одна связь с другим углеродом. Углерод и другой углерод – их электроотрицательности равны, поэтому смещения электронной пары не происходит (связь не полярная).

У этого атома две связи с одним атомом кислорода, и еще одна связь с другим атомом кислорода (в составе группы OH). Более электроотрицательные атомы кислорода по трем связям оттягивают на себя электронную пару у углерода, у углерода появляется заряд +3.

Четвертой связью углерод связан с другим углеродом, как мы уже говорили, по этой связи электронная пара не смещается.

Двумя связями углерод связан с атомами водорода. Углерод, как более электроотрицательный оттягивает себе по одной паре электронов по каждой связи с водородом, приобретает заряд -2.

Двойной связью углерода связан с атомом кислорода. Более электроотрицательный кислород оттягивает на себя по каждой связи одну электронную пару. Вместе получается у углерода оттягивается две электронные пары. Углерод приобретает заряд +2.

Вместе получается +2 -2 = 0.

Определим степень окисления вот этого атома углерода:

Тройная связь с более электроотрицательным азотом – дает углероду заряд +3, по связи с углеродом смещения электронной пары не происходит.

Окисление перманганатом.

Что будет с перманаганатом?

Окислительно-восстановительная реакция с перманганатом может протекать в разных средах (нейтральная, щелочная, кислая). И от среды зависит, как именно будет протекать реакция, и какие при этом образуются продукты.

Поэтому может идти по трем направлениям:

Перманганат, являясь окислителем, восстанавливается. Вот продукты его восстановления:

  1. Кислая среда .

Среду подкисляют серной кислотой (H 2 SO 4). Марганец восстанавливается до степени окисления +2. И продукты восстановления будут:

KMnO 4 + H 2 SO 4 → MnSO 4 + K 2 SO 4 + H 2 O

  1. Щелочная среда .

Для создания щелочной среды добавляют довольно концентрированную щелочь (KOH). Марганец восстанавливается до степени окисления +6. Продукты восстановления

KMnO 4 + KOH → K 2 MnO 4 + H 2 O

  1. Нейтральная среда (и слабощелочная ).

В нейтральной среде кроме перманганата в реакцию так же вступает вода (которую мы пишем в левой части уравнения), марганец будет восстанавливаться до +4 (MnO 2), продукты восстановления будут:

KMnO 4 + H 2 O → MnO 2 + KOH

А в слабощелочной среде (в присутствии раствора KOH невысокой концентрации):

KMnO 4 + KOH → MnO 2 + H 2 O

Что будет с органикой?

Первое, что нужно усвоить – все начинается со спирта! Это начальная стадия окисления. Окислению подвергается тот углерод, к которому присоединена гидроксильная группа.

При окислении атом углерода «приобретает» связь с кислородом. Поэтому, когда записывают схему реакции окисления, над стрелкой пишут [O]:

Первичный спирт окисляется сначала до альдегида, потом до карбоновой кислоты:

Окисление вторичного спирта обрывается на второй стадии. Так как углерод находится посередке, образуется кетон, а не альдегид (атом углерода в кетонной группе уже физически не может образовать связь с гидроксильной группой):

Кетоны , третичные спирты и карбоновые кислоты дальше уже не окисляются:

Процесс окисления ступенчатый – пока есть куда окисляться и есть для этого все условия – реакция идет. Все заканчивается продуктом, который в данных условиях не окисляется: третичный спирт, кетон или кислота.

Стоит отметить стадии окисления метанола. Вначале он окисляется до соответствующего альдегида, затем до соответствующей кислоты:

Особенностью этого продукта (муравьиной кислоты) является то, что углерод в карбоксильной группе связан с водородом, и если приглядеться, то можно заметить, что это ни что иное как альдегидная группа:

А альдегидная группа, как мы выяснили ранее, окисляется дальше до карбоксильной:

Узнали полученное вещество? Его брутто-формула H 2 CO 3 . Это угольная кислота, которая распадается на углекислый газ и воду:

H 2 CO 3 → H 2 O + CO 2

Поэтому метанол, муравьиный альдегид и муравьиная кислота (за счет альдегидной группы) окисляются до углекислого газа.

Мягкое окисление.

Мягкое окисление – это окисление без сильного нагревания в нейтральной или слабощелочной среде (над реакцией пишут 0 ° или 20 °) .

Важно помнить, что спирты в мягких условиях не окисляются. Поэтому если они образуются, то на них окисление и останавливается. Какие вещества будут вступать в реакцию мягкого окисления?

  1. Содержащие двойную связь C=C (Реакция Вагнера).

При этом π-связь разрывается и на освободившиеся связи «садится» по гидроксильной группе. Получается двухатомный спирт:

Напишем реакцию мягкого окисления этилена (этена). Запишем исходные вещества и предскажем продукты. При этом H 2 O и КOH пока не пишем: они могут оказаться как в правой части уравнения, так и в левой. И сразу определяем степени окисления участвующих в ОВР веществ:

Составим электронный баланс (имеем ввиду, что восстановителя два – два атома углерода, окисляются они по-отдельности):

Расставим коэффициенты:

В конце надо дописать недостающие продукты (H 2 O и KOH). Справа не хватает калия – значит щелочь будет справа. Ставим коэффициент перед ней. Слева не хватает водорода, значит, вода слева. Ставим перед ней коэффициент:

Проделаем то же самое с пропиленом (пропеном):

Часто подсовывают циклоалкен. Пусть он вас не смутит. Это обычный углеводород с двойной связью:

Где бы не была эта двойная связь, окисление будет идти одинаково:

  1. Содержащие альдегидную группу .

Альдегидная группа более реакционноспособная (легче вступает в реакции), чем спиртовая. Поэтому альдегидная будет окисляться. До кислоты:

Рассмотрим на примере ацетальдегида (этаналя). Запишем реагенты и продукты и расставим степени окисления. Составим баланс и поставим коэффициенты перед восстановителем и окислителем:

В нейтральной среде и слабощелочной ход реакции будет немного разным.

В нейтральной среде, как мы помним при этом в левой части уравнения пишем воду, а в правой части уравнения щелочь (образуется в ходе реакции):

При этом в одной смеси оказываются рядом кислота и щелочь. Происходит нейтрализация.

Они не могут существовать рядом и реагируют, образуется соль:

При этом если мы посмотрим на коэффициенты в уравнении, то поймем, что кислоты 3 моля, а щелочи 2 моля. 2 моля щелочи может нейтрализовать только 2 моля кислоты (образуется 2 моля соли). А один моль кислоты остается. Поэтому конечное уравнение будет таким:

В слабощелочной среде щелочь в избытке – ее добавляют до реакции, поэтому нейтрализуется вся кислота:

Похожая ситуация возникает при окислении метаналя. Он, как мы помним, окисляется до углекислого газа:

Нужно иметь ввиду, что оксид углерода (IV) CO 2 кислотный. И будет реагировать с щелочью. И так как угольная кислота двухосновная, может образовываться как кислая соль, так и средняя. Это зависит от соотношения между щелочью и углекислым газом:

Если щелочь относится к углекислому газу как 2:1 , то будет средняя соль:

Или же щелочи может быть значительно больше (больше, чем в два раза). Если ее больше чем в два раза, то будет оставаться остаток щелочи:

3KOH + CO 2 → K 2 CO 3 + H 2 O + KOH

Такое будет возникать в щелочной среде (где щелочи избыток, так как она добавлена в реакционную смесь до реакции) или в нейтральной среде, когда щелочи образуется много.

Но если щелочь относится к углекислому газу как 1:1 , то будет кислая соль:

KOH + CO 2 → KHCO 3

Если углекислого газа больше, чем нужно, то он остается в избытке:

KOH + 2CO 2 → KHCO 3 + CO 2

Такое будет в нейтральной среде, если щелочи образуется мало.

Запишем исходные вещества, продукты, составим баланс, проставим степени окисления перед окислителем, восстановителем и продуктами, которые из них образуются:

В нейтральной среде справа будет образовываться щелочь (4KOH):

Теперь надо понять, что же будет образовываться при взаимодействии трех молей CO 2 и четырех молей щелочи.

3CO 2 + 4KOH → 3KHCO 3 + KOH

KHCO 3 + KOH → K 2 CO 3 + H 2 O

Поэтому получается вот так:

3CO 2 + 4KOH → 2KHCO 3 + K 2 CO 3 + H 2 O

Поэтому в правой части уравнения пишем два моля гидрокарбоната и один моль карбоната :

А в слабощелочной среде таких заморочек нет: из-за того, что щелочи избыток, будет образовываться средняя соль:

То же самое будет при окислении альдегида щавелевой кислоты:

Как и в предыдущем примере, образуется двухосновная кислота, и по уравнению должно получиться 4 моля щелочи (так как 4 моля перманганата).

В нейтральной среде опять-таки, всей щелочи не хватит на полную нейтрализацию всей кислоты.

Три моля щелочи уходит на образование кислой соли, один моль щелочи остается:

3HOOC–COOH + 4KOH → 3KOOC–COOH + KOH

И этот один моль щелочи уходит на взаимодействие с одним молем кислой соли:

KOOC–COOH + KOH → KOOC–COOK + H 2 O

Получается вот так:

3HOOC–COOH + 4KOH → 2KOOC–COOH + KOOC–COOK + H 2 O

Конечное уравнение:

В слабощелочной среде образуется средняя соль из-за избытка щелочи:

  1. Содержащие тройную связь C C .

Помните, что было при мягком окислении соединений с двойной связью? Если не помните, то пролистайте назад – вспомните.

π-связь рвется, на атомы углерода прикрепляется по гидроксильной группе. Здесь тот же принцип. Только стоит помнить, что в тройной связи есть две π-связи. Сначала это происходит по первой π-связи:

Потом по другой π-связи:

Структура, в которой у одного атома углерода две гидроксильные группы, крайне неустойчива. Когда в химии что-то не устойчиво, оно стремится, чтобы что-то «отвалилось». Отваливается вода, вот так:

Получается карбонильная группа.

Рассмотрим примеры:

Этин (ацетилен). Рассмотрим стадии окисления этого вещества:

Отщепление воды:

Как и в предыдущем примере, в одной реакционной смеси кислота и щелочь. Происходит нейтрализация – образуется соль. Как видно по коэффициенту перед перманганатом щелочи будет 8 молей, то есть вполне хватает для нейтрализации кислоты. Конечное уравнение:

Рассмотрим окисление бутина-2:

Отщепление воды:

Здесь кислоты не образуется, поэтому морочиться над нейтрализацией не надо.

Уравнение реакции:

Эти различия (между окислением углерода с краю и посередине цепи) ярко демонстрируются на примере пентина:

Отщепление воды:

Получается вещество интересного строения:

Альдегидная группа продолжает окисляться:

Запишем исходные вещества, продукты, определим степени окисления, составим баланс, проставим коэффициенты перед окислителем и восстановителем:

Щелочи должно образовываться 2 моля (так как коэффициент перед перманганатом 2), следовательно, вся кислота нейтрализуется:

Жесткое окисление .

Жесткое окисление – это окисление в кислой , сильнощелочной среде. А также, в нейтральной (или слабощелочной), но при нагревании .

В кислой среде тоже иногда нагревают. Но чтобы жесткое окисление пошло не в кислой среде, нагревание – обязательное условие.

Какие вещества будут подвергаться жесткому окислению? (Вначале разберем только в кислой среде – а потом дополним нюансами, которые возникают при окислении в сильнощелочной и нейтральной или слабощелочной (при нагревании) среде).

При жестком окислении процесс идет по максимуму. Пока есть, что окисляться – окисление идет.

  1. Спирты. Альдегиды .

Рассмотрим окисление этанола. Поступенчато он окисляется до кислоты:

Записываем уравнение. Записываем исходные вещества, продукты ОВР, проставляем степени окисления, составляем баланс. Уравниваем реакцию:

Если реакцию проводить при температуре кипения альдегида, когда он будет образовываться, то будет испаряться (улетать) из реакционной смеси, не успевая окисляться дальше. Того же эффекта можно добиться в очень щадящих условиях (слабое нагревание). В этом случае в качестве продукта пишем альдегид:

Рассмотрим окисление вторичного спирта на примере пропанола-2. Как уже было сказано, окисление обрывается на втором этапе (образование карбонильного соединения). Так как образуется кетон, который не окисляется. Уравнение реакции:

Окисление альдегидов рассмотрим на примете этаналя. Он тоже окисляется до кислоты:

Уравнение реакции:

Метаналь и метанол, как было сказано ранее, окисляются до углекислого газа:

Метаналь:

  1. Содержащие кратные связи .

При этом происходит разрыв цепи по кратной связи. И атомы, которые образовывали ее подвергаются окислению (приобретают связь с кислородом). Окисляются насколько это возможно.

При разрыве двойной связи из обрывков образуются карбонильные соединения (в схеме ниже: из одного обрывка – альдегид, из другого – кетон)

Разберем окисление пентена-2:

Окисление «обрывков»:

Получается, что образуется две кислоты. Запишем исходные вещества и продукты. Определим степени окисления у атомов, которые ее меняют, составим баланс, уравняем реакцию:

Составляя электронный баланс, имеем ввиду, что восстановителя два – два атома углерода, окисляются они по-отдельности:

Не всегда будет образовываться кислота. Разберем, например, окисление 2-метилбутена:

Уравнение реакции:

Абсолютно тот же самый принцип при окислении соединений с тройной связью (только окисление идет сразу с образованием кислоты, без промежуточного образования альдегида):

Уравнение реакции:

Когда кратная связь расположена ровно посередине, то получается не два продукта, а один. Так как «обрывки» одинаковые и окисляются они до одинаковых продуктов:

Уравнение реакции:

  1. Дважды коронованная кислота .

Есть одна кислота, у которой карбоксильные группы (короны) соединены друг с другом:

Это щавелевая кислота. Две короны рядом трудно уживаются. Она конечно устойчива в обычных условиях. Но из-за того, что в ней две карбоксильные группы соединены друг с другом, она менее устойчивая, чем другие карбоновые кислоты.

И поэтому при особо жестких условиях она может быть окислена. Происходит разрыв связи между «двумя коронами»:

Уравнение реакции:

  1. Гомологи бензола (и их производные) .

Сам бензол не окисляется, из-за того, что ароматичность делает эту структуру очень устойчивой

А вот его гомологи окисляются. При этом тоже происходит разрыв цепи, главное знать где именно. Действуют некоторые принципы:

  1. Бензольное кольцо само не разрушается, и остается целым до конца, разрыв связи происходит в радикале.
  2. Окисляется атом, непосредственно связанный с бензольным кольцом. Если после него углеродная цепь в радикале продолжается – то разрыв будет после него.

Разберем окисление метилбензола. Там окисляется один атом углерода в радикале:

Уравнение реакции:

Разберем окисление изобутилбензола:

Уравнение реакции:

Разберем окисление втор-бутилбензола:

Уравнение реакции:

При окислении гомологов бензола (и производных гомологов) с несколькими радикалами, образуются двух- трех- и более основные ароматические кислоты. Например, окисление 1,2-диметилбензола:

Производные гомологов бензола (в которых у бензольного кольца есть не углеводородные радикалы), окисляются так же. Другая функциональная группа у бензольного кольца не мешает:

Промежуточный итог. Алгоритм «как записать реакцию жесткого окисления перманганатом в кислой среде»:

  1. Записать исходные вещества (органика + KMnO 4 + H 2 SO 4).
  2. Записать продукты окисления органики (окисляться будут соединения содержащие спиртовую, альдегидную группы, кратные связи, а также гомологи бензола).
  3. Записать продукт восстановления перманганата (MnSO 4 + K 2 SO 4 + H 2 O).
  4. Определить степени окисления у участников ОВР. Составить баланс. Проставить коэффициенты у окислителя и восстановителя, а также у веществ, которые из них образуются.
  5. Затем рекомендовано посчитать сколько сульфат-анионов в правой части уравнения, в соответствии с этим поставить коэффициент перед серной кислотой слева.
  6. В конце поставить коэффициент перед водой.

Жесткое окисление в сильнощелочной среде и нейтральной или слабощелочной (при нагревании) среде .

Эти реакции встречаются гораздо реже. Можно сказать, что такие реакции – это экзотика. И как положено любым экзотическим реакциям, эти оказались самыми противоречивыми.

Жесткое окисление оно и в Африке жесткое, поэтому органика окисляется так же, как и в кислой среде.

Отдельно реакции для каждого класса разбирать не будем, так как общий принцип уже изложен ранее. Разберем только нюансы.

Сильнощелочная среда :

В сильнощелочной среде перманганат восстанавливается до степени окисления +6 (манганат калия):

KMnO 4 + KOH → K 2 MnO 4 .

В сильнощелочной среде щелочи всегда избыток, поэтому будет проходить полная нейтрализация: если образуется углекислый газ – будет карбонат, если образуется кислота – будет соль (если кислота многоосновная – средняя соль).

Например, окисление пропена:

Окисление этилбензола:

Слабощелочная или нейтральная среда при нагревании :

Здесь также необходимо всегда учитывать возможность нейтрализации.

Если окисление протекает в нейтральной среде и образуется кислотное соединение (кислота или углекислый газ), то образующаяся щелочь будет нейтрализовать это кислотное соединение. Но не всегда щелочи хватит на полную нейтрализацию кислоты.

При окислении альдегидов, например, ее не хватает (окисление будет протекать так же, как и в мягких условиях – температура просто ускорит реакцию). Поэтому образуется и соль, и кислота (оставшаяся грубо говоря в избытке).

Мы это обсуждали, когда разбирали мягкое окисление альдегидов.

Поэтому если у вас образуется кислота в нейтральной среде, нужно внимательно посмотреть хватит ли ее на нейтрализацию всей кислоты. Особое внимание нужно уделить нейтрализации многоосновных кислот.

В слабощелочной среде из-за достаточного количества щелочи образуются только средние соли, так, как щелочи избыток.

Как правило, щелочи при окислении в нейтральной среде вполне хватает. И уравнение реакции что в нейтральной, что в слабощелочной среде будут одинаковы.

Для примера разберем окисление этилбензола:

Щелочи вполне хватает на полную нейтрализацию полученных кислотных соединений, даже лишнего останется:

Расходуется 3 моля щелочи – 1 остается.

Конечное уравнение:

Эта реакция в нейтральной и слабощелочной среде будет идти одинаково (в слабощелочной среде слева щелочи нет, но это не значит, что ее нет, просто она в реакцию не вступает).

Окислительно-восстановительные реакции с участием дихромата (бихромата) калия.

Бихромат не имеет такого большого разнообразия реакций окисления органики в ЕГЭ.

Окисление бихроматом проводится как правило только в кислой среде. При это хром восстанавливается до +3. Продукты восстановления:

Окисление будет жестким. Реакция будет очень похожа на окисление перманганатом. Окисляться будут те же вещества, что окисляются перманганатом в кислой среде, образовываться будут те же продукты.

Разберем некоторые реакции.

Рассмотрим окисление спирта. Если проводить окисление при температуре кипения альдегида, то он будет уходить их реакционной смеси, не подвергаясь окислению:

В противном случае, спирт может быть напрямую окислен до кислоты.

Альдегид, полученный в ходе предыдущей реакции, можно «поймать», и заставить его окисляться до кислоты:

Окисление циклогексанола. Циклогексанол является вторичным спиртом, поэтому образуется кетон:

Если тяжело определить степени окисления атомов углерода по такой формуле, на черновике можно расписать:

Уравнение реакции:

Рассмотрим окисление циклопентена.

Двойная связь рвется (цикл размыкается), атомы, которые ее образовывали окисляются до максимума (в данном случае, до карбоксильной группы):

Некоторые особенности окисления в ЕГЭ, с которыми мы не совсем согласны.

Те «правила», принципы и реакции, которые будут рассмотрены в этом разделе, мы считаем не совсем корректными. Они противоречат не только реальному положению дел (химии как науке), но и внутренней логике школьной программы и ЕГЭ в частности.

Но тем не менее, мы вынуждены дать этот материал именно в том виде, который требует ЕГЭ.

Речь пойдет именно о ЖЕСТКОМ окислении.

Помните, как окисляются гомологи бензола и их произсодные в жестких условиях? Радикалы все обрываются – образуются карбоксильные группы. Обрывки подвергаются окислению уже «самостоятельно»:

Так вот, если вдруг радикале появляется гидроксильная группа, или кратная связь, нужно забыть, что там есть бензольное кольцо. Реакция пойдет ТОЛЬКО по этой функциональной группе (или кратной связи).

Функциональная группа и кратная связь главнее бензольного кольца.

Разберем окисление каждого вещества:

Первое вещество:

Нужно не обращать внимание на то, что есть бензольное кольцо. С точки зрения ЕГЭ – это всего лишь вторичный спирт. Вторичные спирты окисляются до кетонов, а кетоны далее не окисляются:

Пусть это вещество у нас будет окисляться бихроматом:

Второе вещество:

Это вещество окисляется, просто как соединение с двойной связью (на бензольное кольцо не обращаем внимание):

Пусть оно будет окисляться в нейтральном перманганате при нагревании:

Образовавшейся щелочи хватает на полную нейтрализацию углекислого газа:

2KOH + CO 2 → K 2 CO 3 + H 2 O

Итоговое уравнение:

Окисление третьего вещества:

Пусть окисление будет протекать перманганатом калия в кислой среде:

Окисление четвертого вещества:

Оно пусть окисляется в сильнощелочной среде. Уравнение реакции будет:

Ну и напоследок, вот так окисляется винилбензол:

А окисляется он до бензойной кислоты, нужно иметь ввиду, что по логике ЕГЭ он так окисляется не потому, что он – производное бензола. А потому, что он содержит двойную связь.

Заключение .

Это все, что нужно знать об окислительно-восстановительных реакциях с участием перманганата и бихромата в органике.

Не удивляйтесь если, некоторые моменты изложенные в данной статье, вы слышите впервые. Как уже было сказано, тема эта очень обширная и противоречивая. И несмотря на это почему-то ей уделяется крайне мало внимания.

Как вы, возможно, убедились, двумя-тремя реакциями не объяснить всех закономерностей этих реакций. Здесь нужен комплексный подход и подробное объяснения всех моментов. К сожалению в учебниках и на интернет ресурсах тема раскрыта не полностью, либо не раскрыта совсем.

Я постарался устранить эти недоработки и недочеты и рассмотреть эту тему целиком, а не частично. Надеюсь, мне это удалось.

Благодарю Вас за внимание, всего Вам хорошего! Успехов в освоении химической науки и сдаче экзаменов!

Окисление алкенов (ациклических и циклических) при взаимодействии с перкислотами (надкислотами) в неполярной, индифферентной среде сопровождается образованием окисей алкенов – эпоксиды, поэтому сама реакция носит название реакции эпоксидирования.

Согласно современно номенклатуре ИЮПАК, трехчленный цикл с одним атомом кислорода носит название оксиран.
Эпоксидирование алкенов следует рассматривать как синхронный, согласованный процесс, в котором не участвуют ионные интермедиаты типа гидроксильного катиона OH+. Эпоксидирование алкенов представляет собой процесс син-присоединения одного атома кислорода по двойной связи с полным сохранением конфигурации заместителей при двойной связи:

Для эпоксидирования был предложен механизм, характерный для согласованных процессов:

В качестве эпоксидирующих агентов используются перкислоты: пербензойная, м-хлорпербензойная, мононадфталевая, перуксусная, пертрифторуксусная и пермуравьиная. Перкислоты ароматического ряда применяют в виде индивидуальных реагентов, тогда как перкислоты алифатического ряда – CH3CO3H, CF3CO3H и HCO3H – не выделяют индивидуально и используют сразу после их образования при взаимодействии 30- или 90%-й перекиси водорода и соответствующей карбоновой кислоты. Пербензойную и мета-хлорпербензойную кислоты в настоящее время получают окислением соответственно бензойной и мета-хлорбензойной кислот 70%-й перкисью водорода в растворе метансульфокислоты:

или из хлорангидридов кислот и перекиси водорода:

Мононадфталевую кислоту получают подобным методом из фталевого ангидрида и 30%-й перекиси водорода в водной щелочи:

Первоначально для получения оксиранов (эпоксидов) использовалась пербензойная или мононадфталевая кислоты:

Особенно удобен метод с использованием мононадфталевой кислоты. Мононадфталевая кислота хорошо растворима в эфире, тогда как один из продуктов реакции (фталевая кислота) совершенно не растворим в эфире, и о ходе реакции легко судить по количеству выделившейся кристаллической фталевой кислоты.
В настоящее время для эпоксидирования чаще всего используют мета-хлорпербензойную кислоту. В отличие от других перкислот она стабильная при хранении в течение длительного времени (до 1 года) и абсолютно безопасная при обращении. Выходы оксиранов, полученных при окислении ациклических и циклических алкенов мета-хлорпербензойной кислотой в растворе хлористого метилена, обычно очень высокие.

Перкислоты часто генерируют прямо в реакционной смеси из 90%-й перекиси водорода и карбоновой кислоты в хлористом метилене:

Алкены, с двойной связью, сопряженной с карбонильной и карбоксильной группой или другим акцепторным заместителем, малоактивны, и для их окисления необходимо использовать более сильные окислители, такие как трифторперуксусную кислоту, получаемую из ангидрида трифторуксусной кислоты и 90%-й перекиси водорода в хлористом метилене. Альтернативный метод эпоксидирования заключается во взаимодействии алкена с нитрилом и 90%-й перекисью водорода:

Простейший оксиран – окись этилена – получают в промышленности окислением этилена кислородом в присутствии серебра как катализатора:

Трехчленное кольцо оксиранов легко раскрывается под действием самых разнообразных нуклеофильных реагентов. Эти реакции подробно будут обсуждаться в главе 11, посвященной ациклическим и циклическим простым эфирам. Здесь же будет рассмотрен только гидролиз эпоксидов. Гидролиз эпоксидов катализируется как кислотами, так и основаниями. В обоих случаях образуются вицинальные диолы, т.е. гликоли. При кислотном катализе в первой стадии происходит протонирование атома кислорода эпоксида с образованием циклического оксониевого иона, который раскрывается в результате нуклеофильной атаки молекулы воды:

Ключевой стадией в раскрытии кольца, определяющей скорость всего процесса, является нуклеофильная атака водой на протонированную форму эпоксида. С точки зрения механизма этот процесс аналогичен раскрытию бромониевого иона при нуклеофильной атаке бромид-иона или другого нуклеофильного агента. С этих позиций стереохимическим результатом должно быть образование транс-гликолей при расщеплении циклических эпоксидов. Действительно, при кислотно-катализируемом гидролизе циклогексеноксида или циклопентеноксида образуются исключительно транс-1,2-диолы:

Таким образом, двухстадийный процесс эпоксидирования алкена с последующим кислотным гидролизом эпоксида суммарно соответствует реакции анти-гидроксилирования алкенов.
Обе стадии анти-гидроксилирования алкенов можно совместить, если алкен обрабатывать водной 30 – 70%-й перекисью водорода в муравьиной или трифторуксусной кислоте. Обе эти кислоты являются достаточно сильными для того, чтобы вызвать раскрытие эпоксидного цикла, поэтому их обычно используют для анти-гидроксилирования алкенов, например:

Раскрытие эпоксидного кольца, катализируемое основанием, также приводит к образованию транс-гликолей:

Следовательно, двухстадийный процесс эпоксидирования алкенов с последующим щелочным гидролизом эпоксидов также является реакцией анти-гидроксилирования алкенов.
Третий современный метод анти-гидроксилирования алкенов был предложен и разработан К. Прево (1933 г.). Алкен нагревают с йодом и бензоатом или ацетатом серебра в безводном бензоле или CCl4. транс-Присоединение к двойной связи первоначально приводит к образованию йодэфира, в котором йод далее замещается бензоат-ионом, и получается дибензоат гликоля:

Реакция Прево в безводной среде приводит к образованию того же диола, что и эпоксидирование алкенов с последующим гидролизом:

Таким образом, реакция Прево представляет собой более дорогостоящую модификацию других методов анти-гидроксилирования алкенов. Однако для чувствительных к действию кислот соединений этот метод имеет очевидные преимущества перед методом анти-гидроксилирования с помощью перкислот и последующего кислотного гидролиза эпоксида.
Некоторые соли и оксиды переходных металлов высших степенях окисления являются эффективными реагентами син-гидроксилирования двойной связи. Окисление алкенов перманганатом калия – один из старейших методов син-гидроксилирования двойной связи – продолжает широко использоваться несмотря на свойственные ему ограничения. цис-1,2-Циклогександиол был впервые получен В.В. Марковниковым еще в 1878 г. гидроксилированием циклогексена водным раствором перманганата калия при 0ºС:

Этот метод в дальнейшем получил развитие в работах русского ученого Е.Е, Вагнера, поэтому син-гидроксилирование под действием водного раствора перманганата калия носит название реакции Вагнера. Перманганат калия является сильным окислителем, способным е только гидроксилировать двойную связь, но и расщеплять образующийся вицинальный диол. Чтобы по возможности избежать дальнейшего расщепления гликолей, необходимо тщательно контролировать условия реакции. Наилучшие результаты достигаются при гидроксилировании алкенов в слабощелочной среде (pH ~ 8) при 0 – 5ºС разбавленным ~ 1% водным раствором KMnO4. Тем не менее выходы гликолей обычно невелики (30 – 60%):

Первоначально при окислении алкенов перманганатом калия образуется циклический эфир марганцевой кислоты, который немедленно гидролизуется до вицинального диола:

Циклический эфир марганцевой кислоты как интермедиат никогда не был выделен, однако его образование следует из экспериментов с меченым 18O перманганатом калия. К. Вайберг с сотрудниками (1957 г.) показали, что оба атома кислорода в гликоле оказываются мечеными при окислении алкена KMn18O4. Это означает, что оба атома кислорода переходят от окислителя, а не из растворителя – воды, что находится в хорошем соответствии с предлагаемым механизмом.
Другой метод син-гидроксилирования алкенов под действием оксида осмия (VIII) OsO4 был предложен Р. Криге в 1936 г. Тетраоксид осмия представляет собой бесцветное кристаллическое вещество, хорошо растворимое в эфире, диоксане, пиридине и других органических растворителях. При взаимодействии тетраоксида осмия с алкенами в эфире или диоксане образуется черный осадок циклического эфира осмиевой кислоты – осмат, который легко может быть изолирован в индивидуальном виде. Присоединение OsO4 к двойной связи заметно ускоряется в растворе пиридина. Разложение осматов до вицинальных диолов достигается действием водного раствора гидросульфита натрия или сероводородом:

Выходы продуктов син-гидроксилирования алкенов в этом методе значительно выше, чем при использовании перманганата в качестве окислителя. Важным достоинством метода Криге является отсутствие продуктов окислительного расщепления алкенов, характерного для перманганатного окисления:

Тетраоксид осмия – дорогой и труднодоступный реагент, к тому же он очень токсичен. Поэтому оксид осмия (VIII) используют для синтеза малых количеств труднодоступных веществ с целью получения наиболее высокого выхода диола. Для упрощения син-гидроксилирования алкенов под действием OsO4 была разработана методика, позволяющая использовать лишь каталитические количества этого реагента. Гидроксилирование осуществляется с помощью перекиси водорода в присутствии OsO4, например:

Интересно отметить, что высшие оксиды других переходных металлов (V2O5, WO3, MoO3 и др.) катализируют анти-гидроксилирование алкенов.
Р. Вудворд в 1958 г. предложил альтернативный трехстадийный способ син-гидроксилирования алкенов. Первоначально алкен превращают в транс-йодацетат в результате взаимодействия с йодом и ацетатом серебра в уксусной кислоте. Затем галоген замещаю на оксигрупу при обработке водной уксусной кислотой при нагревании. Последняя стадия заключается в гидролитическом отщеплении ацетатной группы:

В заключение этого раздела приведем стереохимические отношения между алкеном цис- или транс-конфигурации и конфигурацией образующегося вицинального гликоля, который может быть цис- или транс-изомером, эритро- или трео-формой, мезо- или d-,l-формой, в зависимости от заместителей в алкене:

Аналогичные стереохимические отношения наблюдаются и в других реакциях син- или анти-присоединения водорода, галогеноводородов, воды, галогенов, гидридов бора и других реагентов по кратной связи.