Эксперимент относится к эмпирическому уровню научного познания. Эмпирический уровень научного познания и его методы

Рассматривая конкретные методы научного познания, следует понимать, что умение использовать эти методы всегда предполагает наличие специализированных знаний. Это важно учитывать потому, что любые формы и виды научной деятельности обязательно предполагают соответствующую подготовку тех специалистов, которые ею занимаются . Эмпирические методы познания – в том числе даже самый «простой» из них – наблюдение – для своего проведения предполагает, во-первых, наличие определенных теоретических знаний, а, во-вторых, использование специального и часто очень сложного оборудования. Кроме этого, проведение любых научных исследований всегда предполагает наличие определенной проблемной ситуации, в целях разрешения которой и проводятся эти исследования . Поэтому эмпирические методы научного познания – это совсем не то же самое, что и относительно похожие способы изучения реальности, которые проводятся с точки зрения здравого смысла и в рамках обыденно-практической установки.

К эмпирическим методам научного познания относятся:

1. Наблюдение;

2. Эксперимент;

3. Измерение.

Среди названных методов научного познания наблюдения является относительно самым простым методом, так как, например, измерение, предполагая проведение дополнительных процедур, в качестве своей основы обязательно предполагает и соответствующее наблюдение.

Наблюдение

Научное наблюдение – это целенаправленное восприятие предметов, явлений и процессов, как правило, окружающего мира. Отличительная особенность именно наблюдения состоит в том, что это метод пассивной регистрации тех или иных фактов действительности. Среди видов научных наблюдений можно выделить следующие:

В зависимости от цели наблюдения можно разделить на проверочные и поисковые ;

По характеру существования того, что исследуется, наблюдения можно разделить на наблюдения предметов, явлений и процессов, которые существуют объективно , т.е. вне сознания наблюдателя, и интроспекцию, т.е. самонаблюдение ;

Наблюдение объективно существующих предметов принято делить на непосредственные и косвенные наблюдения.

В рамках разных наук роль и место метода наблюдения разная. В некоторых науках наблюдение – это практически единственный способ получения исходных достоверных данных. В частности, в астрономии. Хотя эта наука по существу является прикладным разделом физики и поэтому она основывается на теоретических представлениях этой фундаментальной естественной науки, однако многие данные, которые актуальны именно для астрономии, могут быть получены только посредством наблюдения. Например, знания об объектах, которые расположены на расстоянии нескольких световых лет. Для социологии наблюдение – это также один из основных методов эмпирического научного познания.



Научное наблюдение для своего успешного проведения предполагает наличие проблемной ситуации, а также соответствующего концептуально-теоретического обеспечения. В основе научного наблюдения, как правило, лежит какая-либо гипотеза или теория, для подтверждения или опровержения которой и проводится соответствующее наблюдение . Роль и место концептуальных факторов в научном наблюдении, а также специфику их конкретных видов можно показать с помощью следующих примеров.

Как известно, люди наблюдали движение объектов на небе с незапамятных времен и в результате этого пришли к вполне естественному в рамках здравого смысла выводу о том, что Земля с находящимися на ней наблюдателями стоит неподвижно, а вокруг нее по правильным круговым орбитам равномерно двигаются планеты. Для того чтобы объяснить, почему эти планеты не падают на Землю, а парят в пространстве, было высказано предположение, что Земля находится внутри нескольких прозрачных стеклоподобных сфер, в которые как бы вкраплены планеты и звезды. Вращение этих сфер вокруг своей оси, которая совпадает с центром нашей планеты, приводит к тому, что поверхность сфер начинает двигаться, увлекая за собой прочно закрепленные на ней планеты.

Хотя это представление является совершенно неверным, однако оно вполне согласуется с соответствующей логикой здравого смысла, согласно которой для того, чтобы тело постоянно двигалось и никогда не падало, оно должно за что-либо держаться (в данном случае, быть прикрепленным к прозрачным сферам). Представление о том, что возможно постоянное движение тела по замкнутой траектории без того, чтобы его кто-либо поддерживал, для мышления в рамках здравого смысла соответствующей эпохи кажется невероятным. Следует заметить, что, по своему, здравый смысл «прав»: дело в том, что, действительно, в рамках естественного, обыденного и дотеоретического восприятия движения тел на Земле мы не видим ничего, чтобы могло бы все время перемещаться по замкнутой траектории, паря и не касаясь чего-либо, и при этом не падать. Ньютон, который открыл закон всемирного тяготения, естественно тоже наблюдал движение различных земных и космических тел, в том числе, и Луны. Однако он не просто смотрел на них, но использовал наблюдения для того, чтобы на их основе понять то, что увидеть нельзя. А именно: сопоставив данные скорости движения Луны вокруг Земли и их расстояния между собой с характеристиками движения падающих на Землю тел, он пришел к выводу, что за всем этим скрыта единая и общая закономерность, которая и получила название «закона тяготения».

Данный пример можно рассматривать как случай поискового наблюдения, результатом которого стала формулировка соответствующего закона. Целью поискового наблюдения является сбор фактов как первичного эмпирического материала, на основе анализа которого может быть выделено общее и существенное. Проверочное наблюдение отличается от поискового тем, что здесь конечной целью является не поиск нового теоретического знания, а проверка уже существующего. Проверочное наблюдение – это попытка верификации или опровержения какой-либо гипотезы. Примером такого наблюдения является, допустим, попытка убедиться в том, что закон тяготения носит действительно всемирный характер, т.е. что его действие распространяется на взаимодействие любых массивных тел. Из этого закона, в частности, следует, что чем меньше масса взаимодействующих тел, тем меньше и сила притяжения между ними. Поэтому если мы сможем наблюдать, что сила притяжения у поверхности Луны меньше аналогичной силы у поверхности Земли, которая тяжелее Луны, то из этого следует, что данное наблюдение подтверждает закон тяготения. В ходе полета космонавтов можно наблюдать феномен невесомости, когда люди свободно парят внутри корабля, фактически не притягиваясь ни к одной его стенке. Зная, что масса космического корабля практически ничтожна по сравнению с массой планет, данное наблюдение можно рассматривать как еще одну проверку закона тяготения.

Рассмотренные примеры можно считать случаями непосредственных наблюдений объективно существующих объектов. Непосредственные наблюдения – это такие наблюдения, когда соответствующие объекты можно воспринимать непосредственно, видя их самих, а не только те действия, которые они оказывают на другие объекты. В отличие от непосредственных наблюдений косвенные наблюдения – это такие, когда сам объект исследования вообще не наблюдаем. Однако, несмотря на это в случае косвенного наблюдения все же можно видеть те действия, которые оказывает ненаблюдаемый объект на другие, наблюдаемые предметы. Необычное поведение или состояние наблюдаемых тел, которые нельзя объяснить, если предположить, что в действительности есть только непосредственно наблюдаемые тела и есть исходное условие для косвенного наблюдения. Анализируя особенности необычного поведения видимых объектов и сравнивая его со случаями обычного поведения этих объектов можно сделать определенные выводы о свойствах ненаблюдаемых объектов. Компонент необычности в поведении видимых тел и есть косвенное наблюдение того, что не наблюдаемо непосредственно. Примером косвенных наблюдений будет, допустим, ситуация, связанная с «броуновским движением», а также эмпирическая составляющая знаний о «черных дырах».

Броуновское движение – это постоянное движение мельчайших, но все же с помощью достаточного сильного микроскопа визуально наблюдаемых частиц какого-либо вещества в жидкости. В случае броуновского движения вполне естественен вопрос: какова причина наблюдаемого движения этих частиц? Отвечая на этот вопрос можно предположить, что есть и другие, невидимые частицы, которые сталкиваются с видимыми и тем самым толкают их. Как известно, причина броуновского движения в том, что визуально ненаблюдаемые с помощью оптического микроскопа объекты – атомы и молекулы – все время сталкиваются с наблюдаемыми частицами, заставляя их двигаться. Таким образом, хотя сами атомы и молекулы в оптическом диапазоне (видимый свет) вообще ненаблюдаемы, однако и до изобретения электронного микроскопа их отдельные свойства можно было наблюдать. Естественно, только косвенно.

Что касается «черных дыр», то их непосредственно наблюдать невозможно в принципе. Дело в том, что сила тяготения, которая действует в них, столь велика, что никакой предмет – в том числе, видимый свет – не может преодолеть притяжение этих объектов. Тем не менее, черные дыры можно наблюдать косвенно. В частности, в связи с характерным изменением картины звездного неба вблизи них (за счет искривления пространства гравитационными силами) или в том случае, когда черная дыра и самосветящийся объект (звезда) составляют единую систему, которая по законам механики вращается вокруг общего центра масс. В последнем случае необычное движение звезды по замкнутой траектории (ведь непосредственно наблюдаема только она) и будет случаем косвенного наблюдения черной дыры.

Интроспекция – это наблюдение человека за содержанием собственного сознания. В конце 40-х годов XX в. в США был проведено следующее исследование. Для того чтобы выяснить, возможно ли функционирование сознания в случае паралича тела, испытуемому ввели производное кураре, вещество которое парализует всю мускульную систему человека. Оказалось, что, несмотря на паралич мускулатуры (испытуемый был подключен к аппарату искусственного дыхания, так как самостоятельно дышать он не мог) способность к сознательной деятельности сохранилась. Испытуемый был в состоянии наблюдать за тем, что происходит вокруг него, понимал речь, запоминал события и размышлял о них. Из этого был сделан вывод, что психическая деятельность может осуществляться и при отсутствии какой-либо мышечной активности.

Данные, которые получены в результате наблюдения, могут претендовать на научный статус только в том случае, если будет признана их объективность. Существенным фактором этого является воспроизводимость однажды увиденного другими . Если, например, кто-либо заявит, что он наблюдает нечто, что другие в аналогичных условиях не наблюдают, то это будет достаточным основанием для того, чтобы не признать научный статус данного наблюдения. Если же некоторое «наблюдение» еще и противоречит известным и хорошо установленным закономерностям в области какой-либо сферы знания, то в этом случае со значительной долей уверенности можно сказать, что «наблюдаемого» факта в действительности вообще никогда и не существовало. Видимо, одним из самых широко известных случаев такого псевдонаблюдения можно считать историю с «Лох-Несским чудовищем».

Для придания наблюдению статуса научно значимого знания важным моментом является обоснование того, что наблюдаемый объект, те или иные его свойства существуют объективно , а не являются только результатом воздействия инструментария, который использует наблюдатель. Примером грубой ошибки можно считать случай, когда, допустим, камера фотографирует объект, который в действительности является не удаленным предметом экспонируемой панорамы, а артефактом, который случайно прилип к элементам оптической системы камеры (например, частичка пыли на объективе).

Проблема учета и минимизации влияния субъекта-исследователя на изучаемый объект характерна не только для естествознания, но также и для социальных наук. В частности, в рамках социологии существует понятие «включенного наблюдения », т.е. такого, когда исследователь, который собирает данные о некоторой социальной группе, при этом достаточно долгое время живет рядом или даже в составе этой группы. Последнее делается для того, чтобы те, кто является объектом наблюдения, привыкли к присутствию стороннего наблюдателя, не обращали на не него особого внимания и вели в его присутствии себя так, как они ведут обычно.

Эксперимент

Главное отличие эксперимента от наблюдения состоит в том, что это метод не пассивной регистрации данных, а такой способ познания действительности, где с целью исследования существующих связей и отношений целенаправленно организуется протекание соответствующих процессов и явлений . В ходе проведения эксперимента исследователь сознательно вмешивается в естественный ход событий для того, чтобы выявить хотя и существующую, но часто неочевидную взаимосвязь между изучаемыми явлениями. Эксперимент принято относить к эмпирическим методам познания потому, что здесь, как правило, предполагается манипулирование объективно существующими предметами и процессами материального мира, которые, естественно, можно наблюдать. Однако не в меньшей степени эксперимент связан и с определенными теоретическими представлениями. В основе любого эксперимента всегда лежит определенная гипотеза или теория, для подтверждения или опровержения которых и проводится соответствующий эксперимент.

Среди видов экспериментальных исследований можно выделить следующие:

С точки зрения цели проведения эксперименты также как и научные наблюдения можно разделить на проверочные и поисковые ;

В зависимости от объективных характеристик предметов, с помощью которых проводятся исследования, эксперименты можно разделить на прямые и модельные ;

Эксперимент называется прямым , когда объектом изучения является реально существующий предмет или процесс, и модельным , когда вместо самого предмета используется его, как правило, уменьшенная модель. Особой разновидностью модельных экспериментов является исследования математических моделей тех или иных предметов или процессов. Что касается «мысленных экспериментов » – т.е. таких, где реальное исследование вообще не проводится, а только воображается протекание некоторых процессов и явлений – то последние, строго говоря, не могут быть отнесены к области эмпирического познания, так как по своей сути они представляют разновидность теоретических исследований. Впрочем, во многих случаях на основании мысленного эксперимента может быть проведено и реальное опытное исследование, которое можно рассматривать как материализацию соответствующих теоретических представлений.

Для того чтобы понять роль эксперимента как метода научного познания необходимо себе представлять, что та действительность с которой имеет дело исследователь, изначально предстает перед ним не как строго и систематически организованная цепь отношений и причинно-следственных связей, а лишь как лишь более или менее упорядоченное целое, в рамках которого роль и влияние тех или иных факторов часто не вполне очевидна. Поэтому предварительным условием проведения эксперимента является формулировка гипотезы о том, как именно изучаемые факторы могут быть связаны между собой, а для того, чтобы эту предполагаемую взаимосвязь проверить, необходимо создать условия, чтобы исключить влияние других, относительно случайных и несущественных факторов , действие которых может скрывать или нарушать протекание исследуемых отношений. Например, на основе обыденного восприятия окружающего мира можно заметить, что более тяжелое тело падает на поверхность Земли быстрее, чем более легкое. Так происходит потому, что воздух атмосферы препятствует движению тел. Не зная этого, на основе одного только опыта обыденного наблюдения, предварительно обобщив его, можно прийти к «открытию» не существующей на самом деле зависимости: утверждению о том, скорость падения тела всегда зависит от их массы. В действительности такой связи как постоянной зависимости нет, так как массу Земли можно считать бесконечно большой величиной по сравнению с массой любого предмета, который мы в состоянии сбросить на нее. В силу этого скорость падения любого сбрасываемого тела зависит только от массы Земли. Но как это доказать? Галилей, с именем которого принято связывать начало применения эксперимента как метода научного познания, сделал это следующим образом. Он сбросил с высоты 60 м. (Пизанская башня) одновременно два предмета: мушкетную пулю (200 гр.) и пушечное ядро (80 кг.). Так как оба предмета упали на Землю одновременно, Галилей сделал вывод, что гипотеза о том, что скорость падения тела всегда связана с его массой, неверна.

Опыт Галилея – это пример прямого эксперимента с целью проверки (опровержения) неверной теории, согласно которой скорость падения всегда зависит от массы падающего тела. Несколько изменив исходные условия в опыте Галилея нетрудно организовать проведение такого эксперимента, результаты которого можно интерпретировать в качестве подтверждения теории тяготения. Например, если взять достаточно большую камеру, из которой предварительно был откачен весь воздух, и поместить туда неплотный комок ваты и свинцовый шарик, а затем заставить их падать внутри этой камеры, то в результате можно увидеть, что шарик и комок, имея существенно разные параметры массы, площади поверхности и плотности, тем не менее, в разряженной среде (в отсутствии воздуха) упадут одновременно. Этот факт и можно интерпретировать как подтверждение теории тяготения.

Следует заметить, что далеко не во всех случаях у ученых есть хорошее теоретическое обоснование для экспериментальных исследований. Особенность поисковых экспериментов связана с тем, что они проводятся, чтобы собрать необходимую эмпирическую информацию для построения или уточнения некоторого предположения или догадки . Наглядным примером такого типа исследований могут служить опыты Бенджамина Румфорда по изучению природы тепловых явлений. До создания молекулярно-кинетической теории теплоту считали своего рода материальной субстанцией. В частности, полагали, что нагревание тела связано с добавлением к нему этой субстанции, которую называли теплородом. Специалистам по обработке металла резанием во времена Румфорда было хорошо известно, что при сверлении металла образуется большое количество теплоты. Этот факт в рамках теории теплорода пытались объяснить тем, что при обработке металла теплород отделяется от него и переходит в металлическую стружку, которая образуется в результате сверления. Хотя такое объяснение и выглядит малоубедительным, однако ничего лучшего в тот период предложить не могли.

Румфорд естественно знал о факте сильного тепловыделения при сверлении, однако для того, чтобы его объяснить он проделал следующий эксперимент. Он взял специально затупленное сверло и с его помощью проделал отверстие. В результате выделилось еще больше тепла, чем при действии острым сверлом, но зато было просверлено гораздо меньшее отверстие и образовалось совсем немного опилок. На основании данного эксперимента был сделан вывод: увеличение тепла не связано с образованием опилок, в которые, как считалось, переходит субстанция теплорода. Причина тепла – это не высвобождение и переход особой материальной субстанции теплорода, а движение. Таким образом, эксперимент, проделанный Румфордом, способствовал пониманию того, что тепло – это характеристика определенного состояния вещества, а не что-то добавленное к нему.

Далеко не во всех случаях эксперимент является прямым взаимодействием с изучаемым объектом. Очень часто гораздо экономнее проводить исследование на уменьшенных моделях этих объектов . В частности, примерами таких исследований являются опыты по определению аэродинамических характеристик планера (корпуса) самолета или исследования величины сопротивления воды, которое существует при данных формах корпуса судна. Очевидно, что проведение таких исследований на моделях, соответственно, в аэродинамической трубе или в бассейне гораздо дешевле, чем эксперименты с реальными объектами. При этом, надо понимать, что уменьшенная модель – это не точная копия изучаемого объекта, так как физические эффекты, возникающие при обдуве или движений модели, не только количественно, но и качественно не тождественны тем, которые имеют место в случае полноразмерных объектов. Поэтому для того, чтобы полученные на модельных экспериментах данные могли быть использованы при проектировании полноразмерных объектов, они должны быть пересчитаны с учетом специальных коэффициентов.

В связи с распространением в настоящее время ЭВМ все более широкое распространение получают эксперименты с математическими моделями исследуемых объектов. Предпосылкой математического моделирования является квантификация каких-либо существенных свойств исследуемых объектов и тех закономерностей, которым подчиняются эти объекты. Исходные параметры математической модели – это свойства реально существующих объектов и систем, которые переведены в числовую форму. Процесс математического моделирования – это вычисление тех изменений, которые произойдут с моделью в случае изменения исходных параметров. В силу того, что таких параметров может быть очень много, для их расчета требуется большая затрата сил. Применение ЭВМ позволяет автоматизировать и существенно ускорить процесс соответствующих расчетов. Очевидными достоинствами математического моделирования является возможность получения (за счет обработки большого числа параметров) быстрого расчета возможных сценариев развития моделируемых процессов. Дополнительным эффектом такого вида моделирования является значительная экономия средств, а также минимизация других издержек. Например, проведение расчетов особенностей протекания ядерных реакций с помощью ЭВМ позволили отказаться от реальных испытаний ядерного оружия.

Наглядным и самым известным примером мысленного эксперимента является «корабль Галилея». Во времена Галилея полагали, что покой носит абсолютный характер, а движение – это лишь временный процесс перехода от одного состояния к другому под действием какой-либо силы. Стремясь опровергнуть это утверждение, Галилей представил себе следующее. Пусть человек, который находится в закрытом трюме равномерно движущегося корабля и поэтому ничего не знает о том, что происходит вне трюма, попытается ответить на вопрос: стоит ли корабль на месте или плывет? Размышляя над этим вопросом, Галилей пришел к выводу, что у находящегося в трюме при данных условиях нет никакого способа, для того чтобы узнать правильный ответ. А из этого следует, что равномерное движение неотличимо от покоя и, следовательно, нельзя утверждать, что покой – это естественное, как бы первичное, и поэтому соответствующее абсолютной системе отсчета состояние, а движение – это лишь момент покоя, нечто такое, что всегда сопровождается действием какой-либо силы.

Естественно, мысленный эксперимент Галилея нетрудно реализовать и в натурном исполнении.

Экспериментальные исследования могут проводиться не только в естественных, но и в социально-гуманитарных наука. . Например, в психологии, где на основе экспериментов получены данные, которые используются для обоснования предположений, которые, на первый взгляд, достаточно сложно верифицировать. В частности, до всяких специализированных исследований, на уровне обыденного восприятия взрослому человеку хорошо известно, что его психика отличается от психики ребенка.

Вопрос в том, насколько именно она отличается? Если, допустим, характеризуя уровень психического развития взрослого, используют такие понятия, как «личность» и «самосознание», то можно ли и в каком смысле использовать их для характеристики уровня психического развития ребенка? В каком возрасте, например, у человека уже есть самосознания, а когда его еще нет? На первый взгляд, здесь достаточно сложно сказать что-то определенное. Тем более что и сами эти понятия не являются такими, которые определены строго и однозначно.

Несмотря на эти трудности, психолог Жан Пиаже в своих работах достаточно убедительно показал, что маленький ребенок гораздо в меньшей степени способен к осознанному контролю собственных психических процессов, нежели взрослый. В результате ряда исследований Пиаже пришел к выводу, что дети в возрасте 7-8 лет практически не способны к интроспекции (без которой говорить о самосознании в том смысле, в каком им обладают взрослые люди, вряд ли возможно). Эта способность, по его мнению, постепенно формируется в возрастном промежутке между 7-8 и 11-12 годами. Такие выводы Пиаже сделал на основе ряда экспериментов, содержание которых сводилось к тому, что сначала детям предлагали несложную арифметическую задачу (с которой большинство детей может справиться), а затем просил их объяснить, как именно они пришли к соответствующему решению. По мнению Пиаже, наличие интроспективной способности можно признать существующей, если ребенок может провести ретроспекцию, т.е. способен правильно воспроизвести процесс собственного решения. Если он это сделать не может и пытается объяснить решение, отталкиваясь, например, от полученного результата, как если бы он знал его наперед, то это означает, что ребёнок не обладает интроспективной способностью в том смысле, как это присуще взрослым.

В рамках экономической науки тоже, вероятно, можно осмысленно говорить об экспериментальных исследованиях. В частности, если существует некоторая налоговая ставка, в соответствии с которой осуществляются платежи, но при этом часть налогоплательщиков стремиться занизить или скрыть свои доходы, то в рамках описываемой ситуации могут быть предприняты действия, которые можно назвать экспериментальными. Допустим, зная описываемое положение дел, соответствующие правительственные органы могут принять решение об уменьшении ставки налогового обложения, предполагая, что при новых условиях значительной части налогоплательщиков будет выгоднее платить налоги, нежели уклоняться от них, рискуя получить штрафы и другие санкции.

После введения новых ставок налогообложения необходимо сравнить уровень собираемых налогов с тем, который существовал при прежних ставках. Если окажется, что количество налогоплательщиков возросло, так как некоторые при новых условиях согласились выйти «из тени», и общее количество сборов тоже увеличилось, то полученная информация может быть использована для совершенствования работы налоговых органов. Если же окажется, что никаких изменений в поведении налогоплательщиков не произошло и общее количество собранных налогов упало, то эта информация также может быть использована в работе соответствующих органов, мотивируя их, естественно, к поиску каких-то других решений.

Измерение

Измерение – это нахождение отношение между некоторой величиной и другой, которая принята за единицу измерения . Результат измерения выражается, как правило, некоторым числом, благодаря чему становится возможным подвергнуть полученные результаты математической обработке. Измерение – это важный метод научного познания, так как посредством его можно получить точные количественные данные о величине и интенсивности и на основании этого даже иногда сделать предположения о природе соответствующих процессов или явлений.

Изменение как способ определения величины и интенсивности встречается уже на уровне обыденного восприятия мира. В частности, как субъективное переживание «равенства», «большей» или «меньшей» величины какого-либо явления или процесса по сравнению с другими случаями его проявления. Например, свет может восприниматься как более или менее яркий, а температура оцениваться по таким ощущениям, как «холодно», «очень холодно», «тепло», «жарко», «горячо» и т.п. Очевидным недостатком такого способа определения интенсивности является его субъективность и приблизительность . Впрочем, для уровня обыденного восприятия мира такой «шкалы» может быть достаточно, однако в рамках научного познания подобная приблизительность – это серьезная проблема. Причем настолько, что отсутствие способов и практики точных измерений может даже выступать в качестве одного из серьезных факторов, которые сдерживают научное и техническое развитие.

Понять значимость точных измерений можно, если, допустим, представить себе те задачи, которые должны решить конструкторы и технологи при создании сложного технического устройства (например, двигателя внутреннего сгорания). Для того, чтобы этот двигатель работал и при этом еще имел достаточно высокий КПД, необходимо, чтобы его детали – в частности, поршни и цилиндры – были сделаны с высокой точностью. Причем настолько, что зазор между стенками цилиндра и диаметром поршня должен быть в пределах только десятых долей миллиметра. В свою очередь, для того, чтобы изготовить эти детали двигателя, нужны станки, которые способны обрабатывать металл с такой высокой точностью. Если такой или приближающейся к ней точности при данном техническом оснащении достигнуть нельзя, то двигатель либо вообще не будет работать, либо его КПД будет столь низким, что его использование будет экономически нецелесообразно. То же самое можно сказать и в отношении любых других сколько-нибудь сложных технических устройств.

Квантификация отношений между теми или иными явлениями, которая достигается за счет их выражения в точной количественной форме (последнее находит свое проявление в строгой формулировке соответствующих законов природы посредством использования математических формул) – это не просто своеобразная форма записи данных, а особый способ выражения знания, имеющий при этом совершенно определенное эвристическое значение . В частности, выражение в такой форме широко известного закона всемирного тяготения, согласно которому между любыми двумя телами действует сила притяжения, пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, ценно не просто как «точное знание», которое может быть представлено в виде компактной формулы . Эвристическая ценность этой и других формул состоит в том, что используя такую форму представления знаний, можно выполнить точный расчет для конкретной ситуации, подставив в формулу определенные значения. На основании соответствующих расчетов можно создать, допустим, самолет или ракету, которые смогут подняться в воздух и не упасть, вылететь за пределы земного притяжения и достигнуть запланированной цели.

Что касается конкретных объектов изменения , то для естественных наук огромное значение имеет умение, прежде всего, определить численные характеристики пространства и времени : величину, расстояние между объектами и длительность соответствующих процессов.

Измерить расстояние между двумя объектами – значит сравнить его с эталоном . До недавнего времени в качестве эталона использовалось тело, сделанное из твердого сплава , форма которого слабо изменялось при изменении внешних условий. В качестве единицы длины был выбран метр – отрезок, сравнимый с размерами человеческого тела. В большинстве случаев этот эталон не укладывается целое число раз на длине измеряемого отрезка. Поэтому оставшаяся длина измеряется при помощи 1/10, 1/100, 1/1000 и т.д. частей эталона. На практике многократное деление исходного эталона невозможно. Поэтому для повышения точности измерения и измерения малых отрезков потребовался эталон существенно меньших размеров, в качестве которого в настоящее время используются стоячие электромагнитные волны оптического диапазона .

В природе существуют объекты, значительно меньшие по размерам длин волн оптического диапазона – это многие молекулы, атомы, элементарные частицы. При их измерении возникает принципиальная проблема: объекты, размеры которых меньше длины волны видимого излучения, перестают отражать свет по законам геометрической оптики и, следовательно, перестают восприниматься в форме привычных зрительных образов. Для оценки размеров таких мелких объектов свет заменяют потоком каких-либо элементарных частиц . В этом случае величина объектов оценивается по так называемым сечениям рассеяния, определяемым отношением числа частиц, изменивших направление своего движения, к плотности падающего потока. Наименьшим расстоянием, известным в настоящее время, является характерный размер элементарной частицы: 10 -15 м. Говорить о меньших размерах бессмысленно.

При измерении расстояний, значительно превышающих 1 м, пользоваться соответствующим эталоном длины тоже оказывается неудобным. Для измерения расстояний, сравнимых с размерами Земли, применяют методы триангуляции и радиолокации . Метод триангуляции состоит в том, что, зная величины одной стороны треугольника и двух прилегающих к ней углов, можно рассчитать величины двух других сторон. Суть метода радиолокации состоит в измерении времени задержки отраженного сигнала, скорость распространения и время отправления которого известны. Однако для очень больших расстояний, например, для измерения расстояний до других галактик, указанные методы оказываются неприменимыми, так как отраженный сигнал оказывается слишком слабым, а углы, под которыми виден объект, оказываются практически неизмеримыми. На очень больших расстояниях наблюдаемыми оказываются только самосветящиеся объекты (звезды и их скопления). Расстояние до них оценивается исходя из наблюдаемой яркости. В настоящее время наблюдаемая часть Вселенной имеет размеры 10 24 м. Говорить о больших размерностях не имеет смысла.

Измерение длительности процесса означает сравнение его с эталоном . В качестве такого эталона удобно выбрать какой-либо периодически повторяющийся процесс а, например колебания маятника . За единицу измерения времени выбрали секунду – интервал, примерно равный периоду сокращения сердечной мышцы человека. Для измерения значительно более коротких периодов времени возникла необходимость в новых эталонах. В их роли выступали колебания кристаллической решетки и движение электронов в атоме . Еще меньшие периоды времени можно измерить, если сравнивать их со временем прохождения света через заданный промежуток. Поэтому наименьшим осмысленным интервалом времени является время прохождения света через минимально возможное расстояние.

При помощи маятниковых часов возможно измерение временных интервалов, значительно превосходящих 1 секунду, но и здесь возможности метода не беспредельны. Периоды времени, сравниваемые с возрастом Земли (10 17 сек.) обычно оцениваются по полураспаду атомов радиоактивных элементов. По современным представлениям, максимальный промежуток времени, о котором имеет смысл говорить, является возраст Вселенной, который оценивается периодом 10 18 сек. (для сравнения: человеческая жизнь длится около 10 9 сек.).

Описанные способы изменений пространства и времени и та точность, которая в этом достигнута, имеют большое теоретическое и практическое значение. В частности, экстраполяция назад во времени наблюдаемого и точно измеренного расширения Вселенной является одним из важных фактов, который приводят в пользу теории Большого взрыва. Благодаря возможности точных измерений получены данные о перемещении материков Земли относительно друга друга на величину примерно равную нескольким сантиметрам в год, что имеет важное значение для геологии.

Умение провести точное изменение имеет большое значение. Данные, которые могут быть получены в результате такого изменения, часто выступают в качестве существенного аргумента в пользу принятия или отклонения какой-либо гипотезы . Например, измерение О. Рёмером в XVII в. скорости света было важным аргументом в пользу признания того, что последний является естественным физическим процессом, а не чем-то иным, нематериальным, скорость чего «бесконечна», как думали в те и последующие времена многие. Способность точно измерить период прохождения светового луча в разные стороны с помощью специально сконструированного прибора (опыт Майкельсона – Морли в 1880 г.) была важным фактором, который во многом способствовал отказу от теории эфира в физике.

Измерение как метод научного познания имеет огромное значение не только для естественных и технических наук, но значим также и для сферы социально-гуманитарного познания . Исходя из собственного опыта все знают, что осмысленный материал запоминается быстрее, чем бессмысленный. Однако насколько? Психолог Герман Эббингауз установил, что осмысленный материал запоминается в 9 раз быстрее, чем бессмысленный. В настоящее время в рамках прикладной психологии измерения широко используются для оценки психических способностей человека.

Социолог Эмиль Дюркгейм на основе анализа статистических данных о числе самоубийств в различных странах Европы установил корреляцию между этим фактом и степенью интеграции между людьми в соответствующих социальных группах. Знание численности населения некоторой страны, динамика смертности и рождаемости – это важные статистические данные для целого ряда прикладных наук об обществе.

Велика роль измерений и статистических данных и для современной экономической науки, особенно в связи с широким использованием в ней математических методов. Например, численный учет спроса и предложения имеет важное значение в сфере маркетинговых исследований.

Такие эмпирические методы познания, как наблюдение, эксперимент и измерения играют огромную роль в современном научном познании и их использование неотделимо от соответствующих теоретических научных представлений. Именно это отличает их от обыденных эмпирических способов познания мира. Эмпирические методы значимы на всех этапах научного познания мира, так как получаемый посредством них материал используется как для подтверждения и опровержения соответствующих теоретических представлений, так и учитывается при их формулировке.

Одна из существенных особенностей, которая связана с современным этапом развития научных эмпирических методов познания, состоит в том, что для получения и проверки соответствующих результатов требуется чрезвычайно сложное и дорогостоящее оборудование . Видимо, можно сказать, что дальнейшее развитие естественных и технических наук во много определяется возможностью и способностью создавать это оборудование . Например, современные исследования в области фундаментальной физики столь дороги, что проводить их способны только некоторые страны, которые имеют специалистов соответствующего уровня и средства для того, чтобы, в частности, участвовать строительстве и эксплуатации такого сложного прибора для экспериментальных исследований, каким является недавно вступивший в строй большой адронный коллайдер.

23. Методы эмпирического уровня научного познания.

На эмпирическом уровне преобладает живое созерцание (чувственное познание), рациональный момент и его формы (суждения, понятия и др.) здесь присутствуют, но имеют подчиненное значение. Поэтому исследуемый объект отражается преимущественно со стороны своих внешних связей и проявлений, доступных живому созерцанию и выражающих внутренние отношения. Сбор фактов, их первичное обобщение, описание наблюдаемых и экспериментальных данных, их систематизация, классификация и иная фактофиксирующая деятельность - характерные признаки эмпирического познания.

Эмпирическое, опытное исследование направлено непосредственно (без промежуточных звеньев) на свой объект. Оно осваивает его с помощью таких приемов и средств, как описание, сравнение, измерение, наблюдение, эксперимент, анализ, индукция, а его важнейшим элементом является факт.

1. Наблюдение - целенаправленное пассивное изучение предметов, опирающееся в основном на данные органов чувств. В ходе наблюдения мы получаем знания не только о внешних сторонах объекта познания, но и - в качестве конечной цели - о его существенных свойствах и отношениях.

Наблюдение может быть непосредственным и опосредованным различными приборами и другими техническими устройствами.

2. Эксперимент - активное и целенаправленное вмешательство в протекание изучаемого процесса, соответствующее изменение исследуемого объекта или его воспроизведение в специально созданных и контролируемых условиях, определяемых целями эксперимента. В его ходе изучаемый объект изолируется от влияния побочных, затемняющих его сущность обстоятельств и представляется в «чистом виде».

Основные особенности эксперимента: а) более активное (чем при наблюдении) отношение к объекту исследования, вплоть до его изменения и преобразования; б) возможность контроля за поведением объекта и проверки результатов; в) многократная воспроизводимость изучаемого объекта по желанию исследователя; г) возможность обнаружения таких свойств явлений, которые не наблюдаются в естественных условиях.

3. Сравнение - познавательная операция, выявляющая сходство или различие объектов (либо ступеней развития одного и того же объекта), т. е. их тождество и различия. Оно имеет смысл только в совокупности однородных предметов, образующих класс. Сравнение предметов в классе осуществляется по признакам, существенным для данного рассмотрения. При этом предметы, сравниваемые по одному признаку, могут быть несравнимы по другому.

4. Описание - познавательная операция, состоящая в фиксировании результатов опыта (наблюдения или эксперимента) с помощью определенных систем обозначения, принятых в науке.

5. Измерение - совокупность действий, выполняемых при помощи определенных средств с целью нахождения числового значения измеряемой величины в принятых единицах измерения.

Следует подчеркнуть, что методы эмпирического исследования никогда не реализуются «вслепую», а всегда «теоретически нагружены», направляются определенными концептуальными идеями.

Наука - двигатель прогресса. Без тех знаний, которые ежедневно передают нам ученые, человеческая цивилизация никогда бы не достигла хоть сколь-нибудь значимого уровня развития. Великие открытия, смелые гипотезы и предположения - все это продвигает нас вперед. Кстати, а каков механизм познания окружающего мира?

Общие сведения

В современной науке различают эмпирический и теоретический методы. Наиболее результативным следует признать первый из них. Дело в том, что эмпирический уровень научного познания предусматривает углубленное изучение непосредственно интересующего объекта, причем в этот процесс входит как само наблюдение, так и целый набор экспериментов. Как несложно понять, теоретический метод предусматривает познание объекта или явления посредством применения к нему обобщающих теорий и гипотез.

Нередко эмпирический уровень научного познания характеризуется множественными терминами, в которых фиксируются важнейшие характеристики исследуемого предмета. Нужно сказать, что данный уровень в науке особенно уважаем за то, что любое высказывание такого типа может быть проверено в ходе практического эксперимента. К примеру, к таким выражениям можно отнести данный тезис: "Насыщенный раствор поваренной соли можно изготовить, нагревая воду".

Таким образом, эмпирический уровень научного познания - это совокупность способов и методов изучения окружающего мира. Они (методы) основаны, прежде всего, на чувственном восприятии и точных данных измерительных приборов. Вот какие существуют уровни научного познания. Эмпирический, теоретический способы позволяют нам познавать различные явления, открывать новые горизонты науки. Так как они неразрывно связаны, было бы глупо рассуждать о каком-то из них, не рассказав про основные характеристики другого.

В настоящее время уровень эмпирического познания постоянно повышается. Проще говоря, ученые узнают и классифицируют все большие объемы информации, на основании которой и строятся новые научные теории. Конечно же, совершенствуются и способы, при помощи которых они получают данные.

Методы эмпирического познания

В принципе, о них можно догадаться самостоятельно, опираясь на сведения, которые уже были приведены в данной статье. Вот основные методы научного познания эмпирического уровня:

  1. Наблюдение. Этот способ известен всем без исключения. Он предполагает, что сторонний наблюдатель будет только беспристрастно фиксировать все происходящее (в естественных условиях), не вмешиваясь в сам процесс.
  2. Эксперимент. В чем-то схож с предыдущим методом, но в этом случае все происходящее помещено в жесткие лабораторные рамки. Как и в предыдущем случае, ученый часто является наблюдателем, который фиксирует результаты какого-то процесса или явления.
  3. Измерение. Этот способ предполагает необходимость эталона. С ним сравнивается явление или объект для выяснения расхождений.
  4. Сравнение. Схоже с предыдущим методом, но в данном случае исследователь просто сравнивает любые произвольные предметы (явления) между собой, не нуждаясь в эталонных мерах.

Вот мы вкратце и разобрали основные методы научного познания эмпирического уровня. А сейчас рассмотрим одни из них несколько более подробно.

Наблюдение

Нужно заметить, что оно бывает сразу нескольких видов, причем конкретный подбирает сам исследователь, ориентируясь на ситуацию. Давайте перечислим все разновидности наблюдения:

  1. Вооруженное и невооруженное. Если вы имеет хоть какое-то понятие о науке, то знаете, что «вооруженным» называют такое наблюдение, при котором используются различные приборы и приспособления, которые позволяют с большей точностью фиксировать получаемые результаты. Соответственно, «невооруженным» называют наблюдение, которое осуществляется без применения чего-то подобного.
  2. Лабораторное. Как видно из названия, осуществляется исключительно в искусственной, лабораторной среде.
  3. Полевое. В отличие от предыдущего, выполняется исключительно в естественных условиях, «в поле».

Вообще, наблюдение хорошо как раз тем, что во многих случаях позволяет получать совершенно уникальную информацию (особенно полевое). Нужно заметить, что данный метод широко распространен далеко не у всех ученых, так как для его успешного применения необходимы немалое терпение, усидчивость и способность беспристрастно фиксировать все наблюдаемые объекты.

Вот чем характеризуется основной метод, который использует эмпирический уровень научного познания. Это приводит нас к мысли о том, что данный способ - сугубо практический.

Всегда ли важна непогрешимость наблюдений?

Как ни странно, но в истории науки есть немало случаев, когда важнейшие открытия становились возможными благодаря грубым ошибкам и просчетам в процессе наблюдения. Так, в XVI веке знаменитый астроном Тихо де Браге делал работу своей жизни, пристально наблюдая за Марсом.

Именно на основе этих бесценных наблюдений его ученик, не менее знаменитый И. Кеплер, формирует гипотезу об эллипсовидной форме планетарных орбит. Но! Впоследствии оказалось, что наблюдения Браге отличались редкой неточностью. Многие предполагают, что он намеренно дал ученику неправильные сведения, но суть от этого не меняется: если бы Кеплер использовал точную информацию, он бы никогда не смог создать цельную (и правильную) гипотезу.

В этом случае благодаря неточности удалось упростить изучаемый предмет. Обойдясь без сложных многостраничных формул, Кеплер смог выяснить, что форма орбит не круглая, как тогда предполагалось, а эллипсовидная.

Основные отличия от теоретического уровня познания

Напротив, все выражения и термины, которыми оперирует теоретический уровень познания, проверить на практике нельзя. Вот вам пример: "Насыщенный раствор солей можно изготовить, нагревая воду". В этом случае пришлось бы провести невероятное количество экспериментов, так как "раствор солей" не указывает на конкретное химическое соединение. То есть "раствор поваренной соли" - понятие эмпирическое. Таким образом, все теоретические высказывания неверифицируемы. Согласно Попперу, они фальсифицируемы.

Проще говоря, эмпирический уровень научного познания (в отличие от теоретического) весьма конкретен. Результаты опытов можно потрогать, понюхать, подержать в руках или увидеть графики на дисплее измерительных приборов.

Кстати, а какие существуют формы эмпирического уровня научного познания? На сегодняшний день их две: факт и закон. Научный закон - высшая форма эмпирической формы познания, так как он выводит основные закономерности и правила, в соответствии с которыми происходит природное или техническое явление. Под фактом понимается лишь то, что оно проявляется при определенном сочетании нескольких условий, но ученые в этом случае еще не успели сформировать стройную концепцию.

Связь эмпирических и теоретических данных

Особенность научного познания во всех областях состоит в том, что теоретические и эмпирические данные характеризуются взаимным проникновением. Нужно заметить, что абсолютным образом разделить эти понятия совершенно невозможно, что бы ни утверждали некоторые исследователи. К примеру, мы говорили об изготовлении раствора солей. Если человек имеет представления о химии, этот пример будет для него эмпирическим (так как он и сам знает о свойствах основных соединений). Если же нет - высказывание будет носить теоретический характер.

Важность эксперимента

Нужно твердо усвоить, что эмпирический уровень научного познания ничего не стоит без экспериментальной основы. Именно эксперимент - основа и первоисточник всех знаний, которые на данный момент накоплены человечеством.

С другой стороны, теоретические изыскания без практической основы вообще превращаются в беспочвенные гипотезы, которые (за редкими исключениями) не имеют абсолютно никакой научной ценности. Таким образом, эмпирический уровень научного познания не может существовать без теоретического обоснования, но и оно без эксперимента ничтожно. Для чего мы все это говорим?

Дело в том, что рассмотрение способов познания в этой статье следует осуществлять, предполагая фактическое единство и взаимосвязь двух методов.

Характеристики эксперимента: что это такое

Как мы уже неоднократно говорили, особенности эмпирического уровня научного познания заключаются в том, что результаты опытов можно увидеть или ощутить. Но чтобы это произошло, необходимо произвести эксперимент, который является буквально «сердцевиной» всего научного познания с древнейших пор и по сей день.

Термин произошел от латинского слова «экспериментум», которое как раз-таки означает «опыт», «проба». В принципе, эксперимент - это и есть апробирование некоторых явлений в искусственных условиях. Нужно помнить, что во всех случаях эмпирический уровень научного познания характеризуется стремлением экспериментатора как можно меньше влиять на происходящее. Это нужно для получения действительно «чистых», адекватных данных, по которым можно с уверенностью говорить о характеристиках изучаемого предмета или явления.

Подготовительная работа, приборы и оборудование

Чаще всего перед постановкой эксперимента необходимо провести обстоятельную подготовительную работу, от качества которой будет зависеть и качество полученной в результате опыта информации. Давайте поговорим о том, как обычно осуществляется подготовка:

  1. Во-первых, разрабатывается программа, в соответствии с которой будет производиться научный опыт.
  2. В случае необходимости ученый самостоятельно изготавливает необходимую аппаратуру и оборудование.
  3. Еще раз повторяют все моменты теории, для подтверждения или опровержения которой и будет производиться эксперимент.

Таким образом, основная характеристика эмпирического уровня научного познания - наличие необходимого оборудования и приборов, без которых проведение эксперимента в большинстве случаев становится невозможным. И здесь мы говорим не о распространённой компьютерной технике, а о специализированных приборах-детекторах, которые измеряют весьма специфические условия окружающей среды.

Таким образом, экспериментатор всегда должен находиться во всеоружии. Речь тут не только о технической оснащенности, но и об уровне владения теоретическими сведениями. Не имея представления об изучаемом предмете, довольно сложно проводить какие-то научные эксперименты для его исследования. Нужно заметить, что в современных условиях многие эксперименты часто проводятся целой группой ученых, так как такой подход позволяет рационализировать усилия и распределить сферы ответственности.

Чем характеризуется изучаемый объект в экспериментальных условиях?

Изучаемое явление или предмет в эксперименте поставлены в такие условия, что они неизбежно будут воздействовать на органы чувств ученого и/или на регистрирующие приборы. Заметим, что реакция может зависеть как от самого экспериментатора, так и от характеристик используемого им оборудования. Кроме того, эксперимент далеко не всегда может дать все сведения об объекте, так как он проводится в условиях изоляции от окружающей среды.

Об этом очень важно помнить, рассматривая эмпирический уровень научного познания и его методы. Именно из-за последнего фактора так ценится наблюдение: в большинстве случаев только оно может дать реально полезные сведения о том, как тот или иной процесс происходит в естественных условиях природы. Такие данные зачастую невозможно получить даже в наиболее современной и отлично оборудованной лаборатории.

Впрочем, с последним утверждением все же можно поспорить. Современная наука сделала неплохой рывок вперед. Так, в Австралии изучают даже низовые лесные пожары, воссоздавая их протекание в особой камере. Такой подход позволяет не рисковать жизнями сотрудников, получая вполне приемлемые и качественные данные. К сожалению, это возможно далеко не всегда, потому как не все явления можно воссоздать (во всяком случае, пока что) в условиях научного учреждения.

Теория Нильса Бора

О том, что эксперименты в лабораторных условиях далеко не всегда точны, заявлял еще знаменитый физик Н. Бор. Но его робкие попытки намекнуть оппонентам о том, что средства и приборы в значительной степени влияют на адекватность получаемых данных, долгое время встречались коллегами крайне негативно. Они считали, что любое влияние прибора можно исключить, как-то изолировав его. Проблема состоит в том, что сделать это практически невозможно даже на современном уровне, не говоря уже о тех временах.

Конечно, современный эмпирический уровень научного познания (что это такое, мы уже говорили) высок, но фундаментальные законы физики нам обходить не суждено. Таким образом, задача исследователя состоит не только в банальном описании предмета или явления, но и в объяснении его поведения в различных условиях окружающей среды.

Моделирование

Ценнейшей возможностью изучить саму суть предмета является моделирование (в том числе компьютерное и/или математическое). Чаще всего экспериментируют в этом случае не над самим явлением или объектом, а над их максимально реалистичными и функциональными копиями, которые были созданы в искусственных, лабораторных условиях.

Если не очень понятно, поясним: исследовать торнадо гораздо безопаснее на примере его упрощенной модели в аэродинамической трубе. Затем полученные в ходе опыта данные сверяют с информацией о реальном смерче, после чего делаются соответствующие выводы.

Человек при контакте с окружающим его миром не может использовать только научные факты и бесчувственное логическое суждение. Намного чаще ему требуется эмпирическое познание для живого созерцания и работы органов чувств – зрения, слуха, вкуса, обоняния и осязания.

Что значит эмпирическое познание?

Весь процесс познания принято делить на две части: теоретическую и эмпирическую. Первая считается высшей, исходя из того, что она строится на проблемах и законах, являющихся их решением. Суждение о ней, как об идеале, спорно: теория хороша для уже изученных процессов, признаки которых давно рассмотрены и описаны кем-то другим. Эмпирическое познание – это совсем иная форма знания. Она первоначальна, потому что теорию нельзя создать без анализа собственных ощущений от объекта исследования. Его также называют чувственным созерцанием, что означает:

  1. Первичную обработку знаний об объекте. Пример примитивен: человечество так и не узнало бы, что огонь – горячий, если бы однажды его пламя кого-нибудь не обожгло.
  2. Исходный момент общего познавательного процесса. Во время него у человека активизируются все органы чувств. Например, обнаружив новый вид, ученый использует эмпирическое познание и устанавливает за ним наблюдение и фиксирует все изменения поведения, веса, цвета особи.
  3. Взаимодействие личности с внешним миром. Человек все же сам является млекопитающим, а потому в процессе чувственного изучения полагается на инстинкты.

Эмпирическое познание в философии

У каждой науки есть уникальное видение необходимости использования чувств в процессе изучения окружающей среды и общества. Философия считает, что эмпирический уровень познания – это категория, служащая укреплению связей в социуме. Развивая наблюдательные способности и , человек делится опытом с окружающими и вырабатывает мыслящее созерцание – конструктивное восприятие, возникающее из симбиоза чувств и внутреннего взора (точки зрения).


Признаки эмпирического познания

Черты, характерные любому изучаемому процессу, называют его особенностями. В философии используют аналогичное понятие – признаки, раскрывающие характеристики происходящего процесса. Особенности эмпирического познания включают:

  • сбор фактов;
  • их первичное обобщение;
  • описание наблюдаемых данных;
  • описание сведений, приобретенных во время эксперимента;
  • систематизация и классификация информации.

Методы эмпирического познания

Понять механизм философской или социологической категории нереально без предварительной выработки правил проведения исследования. Эмпирический путь познания нуждается в таких методах, как:

  1. Наблюдение – стороннее изучение объекта, полагающееся на данные органов чувств.
  2. Эксперимент – направленное вмешательство в процесс или его воспроизведение в лабораторных условиях.
  3. Измерение – придание результатам эксперимента статистической формы.
  4. Описание – фиксация представления, полученного от органов чувств.
  5. Сравнение – анализ двух схожих объектов ради выявления их схожести или различий.

Функции эмпирического познания

Функции любой философской категории означают цели, которых можно достичь ее применением. В них раскрывается сама необходимость существования понятия или явления с точки зрения полезности. Эмпирический способ познания имеет следующие функции:

  1. Образовательная - и имеющиеся навыки.
  2. Управленческая - может сказываться на управлении человеком своим поведением.
  3. Оценочно-ориентационная - эмпирическое познание мира способствует оценке действительности бытия и своего места в ней.
  4. Целеполагающая – приобретение верных ориентиров.

Эмпирическое познание - виды

Чувственный способ получения знаний может принадлежать к одной из трех разновидностей. Все они взаимосвязаны друг с другом и без этого единства невозможен эмпирический метод познания мира. В число этих видов входят:

  1. Восприятие - создание полноценного образа предмета, синтез ощущений от созерцания совокупности всех сторон объекта. Например, яблоко воспринимается человеком не как кислое или красное, а как целостный предмет.
  2. Ощущение - эмпирический вид познания, отражающий в сознании человека свойства отдельных сторон предмета и их воздействие на органы чувств. Каждая из характеристик ощущается изолированно от других – вкус, запах, цвет, размер, форма.
  3. Представление - обобщенный наглядный образ объекта, впечатление о котором было составлено в прошлом. Большую роль в этом процессе играет память и воображение: они восстанавливают воспоминания о предмете в его отсутствие.

В недалеком прошлом считалось, что познание имеет две ступени:

1. чувственное отражение действительности,

2. рациональное (разумное) отражение действительности.

Затем, когда все больше прояснялось, что у человека чувственное в ряде моментов пронизывается рациональным, стали приходить к мнению, что уровнями познания являются эмпирические и теоретические, а чувственное и рациональное - это способности, на базе которых формируется эмпирическое и теоретическое знание.

Эмпирическое познание, или чувственное, или живое созерцание - это сам процесс познания, включающий в себя три взаимосвязанные формы:

1. ощущение - отражение в сознании человека отдельных сторон, свойств предметов, непосредственное воздействие их на органы чувств;

2. восприятие - целостный образ предмета, непосредственно данный в живом созерцании совокупности всех своих сторон, синтез данных ощущений;

3. представление - обобщенный чувственно-наглядный образ предмета, воздействовавшего на органы чувств в прошлом, но не воспринимаемого в данный момент.

Различают образы памяти и воображения. Образы предметов обычно нечеткие, расплывчатые, усредненные. Но зато в образах обычно выделены наиболее важные свойства предмета и отброшены несущественные.

Ощущения по органу чувств, через который они получены, делятся на зрительные (самые важные) слуховые, вкусовые и др. Обычно ощущения являются составной частью восприятия.

Как видим, познавательные способности человека связаны с органами чувств. Человеческий организм имеет экстерорецептивную систему, направленную на внешнюю среду (зрение, слух, вкус, обоняние и др.) и интерорецептивную систему, связанную с сигналами о внутреннем физиологическом состоянии организма.

Теоретическое познание наиболее полно и адекватно выражено в мышлении. Мышление - это процесс обобщенного и опосредованного отражения действительности, осуществляющейся в ходе практической деятельности и обеспечивающий раскрытие ее основных закономерных связей (на основе чувственных данных) и их выражение в системе абстракции.

Различают два уровня мышления

1.рассудок - исходный уровень мышления, на котором оперирование абстракциями происходит в пределах неизменной схемы, шаблона; это способность последовательно и ясно рассуждать, правильно строить свои мысли, четко классифицировать, строго систематизировать факты.

2. Разум (диалектическое мышление) - высший уровень теоретического познания, творческое оперирование абстракциями и сознательное исследование их собственной природы.

Рассудок - это обычное житейское мышление, здоровых высказываний и доказательств, обращая основное внимание на форму знания, а не на его содержание. С помощью разума человек постигает сущность вещей, их законы и противоречия. Главная задача разума - объединить многообразное, выявить коренные причины и движущие силы изучаемых явлений. Логика разума - диалектика, представленная как учение о формировании и развитии знаний в единстве их содержания и формы. Процесс развития включает в себя взаимосвязь рассудка и разума и их взаимные переходы из одного в другое и наоборот. Разум и рассудок имеют место и при живом созерцании, и при абстрактном мышлении, т.е на эмпирическом и теоретическом уровнях научного познания.

Но процесс мышления не всегда осуществляется в развернутом и логическом виде. Важное место в познании занимает интуиция (догадка). Интуицию издавна делят на чувственную и интеллектуальную. Также интуиция бывает технической, научной, обыденной, врачебной и т.п., в зависимости от специфики деятельности субъекта. Интуиция - это непосредственное знание, которое не опирается на логическое доказательство.

Познание связано с практикой - материальным освоением общественным человеком окружающего мира, взаимодействием человека с материальными системами. В практике люди преобразуют и создают материальные вещи, т.е. идет опредмечивание, или материализация намерений людей. Практика имеет две взаимосвязанные сферы: производство предметов потребления и производство орудий труда.

Практика и познание, практика и теория взаимосвязаны и воздействуют друг на друга. В их взаимоотношениях содержится противоречие. Стороны могут быть в соответствии, гармонии, но могут быть и дисгармонии, доходящие до конфликта. Преодоление противоречий ведет к развитию и теории, и практики.

Научными методами эмпирического исследования являются наблюдения, описания, измерения, эксперименты.

Наблюдение - целенаправленное восприятие явлений объективной действительности.

Описание - фиксация средствами естественного или искусственного языка сведений об объекте.

Измерение - сравнение объекта по каким-либо сходным свойствам или сторонам.

Эксперимент - наблюдение в специально создаваемых и контролируемых условиях, что позволяет восстановить ход явления при повторении условий.

Существует несколько видов эксперимента:

1) лабораторный, 2) естественный, 3) исследовательский, 4) проверочный, 5) воспроизводящий, 6) изолирующий, 7) количественный, 8) физический, 9) химический и т.д.

Среди научных методов теоретического исследования выделяют формализацию, оксиомотический метод и гипотетико-дедуктивный метод.

Формализация - это отображение содержательного знания в знаковой форме (формализованный язык).

Аксиоматический метод - способ построения научной теории, основанный на некоторых исходных положениях - оксиомах (постулатах), из которых остальные все утверждения этой теории выводятся чисто логическим путем, посредством доказательства. Для вывода теорем из оксиом (и вообще одних формул из других) формулируются специальные правила вывода.

Гипотетико-дедуктивный метод - это создание системы дедуктивно связанных между собой гипотез, из которых в конечном счете выводятся утверждения об эмпирических (опытных) фактах. (Дедукция - выведение заключений из гипотез (предпосылок), истинное заключение которых неизвестно). Это значит, что заключение, вывод, полученный на основе этого метода, неизбежно будет лишь вероятностным.

Гипотеза исследования - это научно обоснованное предположение о структуре изучаемого явления или о характере связей между его компонентами.

Таким образом, эмпирический и теоретический уровни исследования различны. Это различие основано на неодинаковости:

1. способов (методов) самой познавательной активности;

2. характером достигаемых научных результатов.

Для эмпирического познания характерна фактофиксирующая деятельность: вырабатываются исследовательские программы, организуются наблюдения, эксперименты, описание экспериментальных данных, их классификация, первичное обобщение.

Теоретическое ж познание - это существенное познание, осуществляемое на уровне абстракции высоких порядков. Здесь орудием выступают понятия, категории, законы, гипотезы и др. Оба эти уровня связаны, предполагают друг друга, хотя исторически эмпирическое познание предшествует теоретическому.

В эмпирическом познании преобладает чувственный аспект, в теоретическом - рациональный (разумный). Их соотношение находит свое отражение в методах, используемых на каждом этапе.

Любое научное исследование предполагает не только движение «вверх», ко всему более совершенному, разработанному теоретически аппарату, но и движение «вниз», связанное с ассимиляцией эмпирической информации.

Использованные материалы:

1. П.В. Алексеев, А.В. Панин. Теория познания и диалектика. Москва, Высшая школа. 1991г.

2. В.В. Ильин. Теория познания. Эпистемалогия. Москва. Изд-во мгу, 1974

3. Материалы с сайта http://www.filreferat.pop al.ru

Различие между эмпирическим и теоретическим этапами познания проявляется также в различном соотношении чувственного и рационального коррелятов познавательной деятельности. Прежде чем обсуждать этот вопрос, следует остановиться на проблеме соотношения пар категорий«чувственное-рациональное» и «эмпирическое-теоретическое». До становления в методологии и философии второй пары категорий первая пар категорий употреблялась в различных смыслах. Прежде всего «чувственное» и«рациональное» использовались для обозначения двух видов познавательных способностей человека. Чувственная познавательная способность проявляется в ощущениях, восприятиях, представлениях. Рациональность же проявляется и способности к понятийному мышлению, суждению и умозаключению. Во втором смысле «чувственное» и «рациональное» употреблялись для обозначения этапов и уровней познания, ступеней познания, типов знания. К настоящему времени второй смысл понятий «чувственное» и «рациональное» целиком закреплен за парой категорий «теоретическое-эмпирическое». «Чувственное» и«рациональное» характеризуют лишь познавательные способности человека, но не этапы или виды знания. В своем использовании в человеческом познании они не оторваны друг от друга. Не может быть чувственного знания как такового и рационального знания как такового, хотя можно выделять эмпирический и теоретический тины знания. Соотношение же чувственного и рационального коррелятов в эмпирическом и теоретическом познании различное. В эмпирическом познании доминирует чувственный коррелят, а в теоретическим - рациональный. Соответственно различное соотношение чувственного и рационального коррелятов находит свое отражение и в методах, используемых на каждом этапе. Ясно, что метод наблюдения, используемый на эмпирическом этапе, базируется в основном на чувственной познавательной способности, но в той степени, в какой наблюдение имеет целенаправленный характер, а его результаты фиксируются в языковой форме, оно включает в себя и использование рационального познания. Аналогичным образом, поскольку на теоретическом этапе в основном используется способность к абстрактному, понятийному мышлению, в нем доминирует рациональный коррелят, но в той степени, в какой любое понятие ассоциируется с определенной совокупностью восприятии, представлений и наглядных образов, в нем присутствует и чувственная компонента.

Следует, однако, иметь в виду, что при всех различиях жесткой границы между эмпирическим и теоретическим познанием не существует. Так, эмпирическое исследование, хотя и ориентировано на познание и фиксацию явлений, постоянно прорывается на уровень сущности, а теоретическое исследование ищет подтверждения правильности своих результатов в эмпирии.Эксперимент, будучи во многих науках основным методом эмпирического познания, всегда теоретически нагружен, а любая самая абстрактная теория должна всегда иметь эмпирическую интерпретацию. Но при всей неопределенности границ между эмпирическим и теоретическим знанием введение этих категории, безусловно, знаменовало собой прогресс в развитии методологии науки, поскольку способствовало конкретизации наших представлений о структуре познавательной деятельности в науке. В частности, использование этих категорий позволило уточнить структуру научного познания в целом, способствовало формированию более конструктивного подхода к решению проблемы эмпирического обоснования научного знания, привело к более полному выявлению специфики теоретического мышления в научном исследовании, позволило уточнить логическую структуру выполнения наукой основных познавательных функций, а также содействовало решению многих фундаментальных проблем логики и методологии научного познания. За последнее время советские философы внесли существенный вклад в разработку этих категорий. Учитывая разработанность этих категорий, мы рекомендуем студентам для освоения их содержания обратиться к имеющейся литературе.

В настоящее время отрицать фундаментальное значение этих категории в решении методологических проблем науки невозможно, даже принимая в расчет существование всех тех расхождений, которые имеются между различными авторами по вопросу об истолковании сущности и содержания категорий эмпирического и теоретического. Однако следует заметить, что введение этих категорий и уточнение их содержания одновременно сопровождалось и молчаливым, имплицитным принятием допущения о дихотомическом характере этих категорий по отношению к общему представлению о структуре научного знания, т.е. предполагается, что теоретическое и эмпирическое являются базисными, исходными методологическими единицами, на основании которых только и возможно дальнейшее уточнение и детализация структурных представлений о научном познании, или, другими словами, предполагается, что дальнейшие структурные подразделения в научном исследовании возможны только внутри теоретического и эмпирического уровней. Все, что выходит собственно за рамки теоретического или эмпирического знания, к телу научного знания не принадлежит.

При всей важности категорий эмпирического и теоретического такого рода дихотомическое представление о структуре научного знания к настоящему моменту исчерпало себя. Внутренняя логика методологических исследований все чаще и чаще ставит на повестку дня вопрос о необходимости введения в методологию науки новой методологической единицы, смысл и содержание которой не сводимы к дихотомии эмпирического и теоретического. В этом новом базисном методологическом понятии фиксируется существование в науке еще одного, третьего уровня знания, который находится над теоретическим знанием и выступает в качестве метатеоретической, экстратеоретической предпосылки самой теоретической деятельности в науке. В западной литературе такого рода попытки введения в философию науки, наряду с категориями теоретического и эмпирического, новой базисной методологической единицы наиболее откровенное свое выражение получили в ныне широко известных методологических концепцияхТ. Куна и И. Лакатоса. Т. Кун, не отрицая различия между теоретической и эмпирической деятельностью в науке, вводит принципиально новое базисное методологическое понятие «парадигма», в котором фиксируется существование особого типа знания в научном исследовании, отличающегося от теоретического знания по способу своего возникновения и обоснования. Хотя в концепции Куна в качестве парадигмы может выступать та или иная фундаментальная теория, становясь парадигмой, она приобретает такие новые характеристики, которые по способам обоснования и функционирования уже не позволяют считать ее теорией. Парадигмальное знание не выполняет непосредственно объяснительной функции, а является условием и предпосылкой определенного вида теоретической деятельности по объяснению и систематизации эмпирического материала. Аналогичный смысл имеет и понятие «исследовательская программа», вводимое в методологию науки И. Лакатосом. Исследовательская программа также понимается Лакатосом как определенного рода метатеоретическое образование, содержащее набор исходных идей и методологических установок, обусловливающих построение, развитие и обоснование определенной теории.

В литературе по методологии научного познания за последние 15-20 лет также возник целый комплекс понятий, в которых нашли отражение различные элементы метатеоретического или экстратеорстического уровня научного познания. Одним из первых попытку введения подобного рода понятия предпринял А. А. Ляпунов в одной из своих статей, посвященных выявлению особенностей строения научного знания. В частности, он предложил выделить в составе научно-теоретического знания такой элемент, как «интертеория». К интертеорстическому знанию он относит «тот общий комплекс сведений, которые необходимо принимать во внимание при рассмотрении данной теории». Однако более широкое хождение в нашей литературе для обозначения метатеоретического фона научно-исследовательской деятельности получило понятие «стиль мышления». Первоначально понятие стиля мышления употреблялось в узком смысле этого слова и связывалось с фиксацией лишь отдельных сторон теоретической деятельности на разных исторических этапах развития науки. Так, Ю. Сачков, одним из первых в нашей литературе попытавшийся уточнить смысл этого понятия, связывает стиль мышления с определенными представлениями о структуре отношений детерминации и соответственно выделяет в истории пауки три стиля мышления: однозначно- детерминистский, вероятностно-статистический и кибернетический М. Борн связывает понятие стиля мышления с определенной системой взглядов на структуру субъект-объектных отношений в науке. Однако со временем смысл понятия стиля мышления расширяется настолько, что оно становится по своему объему и содержанию сопоставимым с куновским понятием парадигмы, и в нем пытаются охватить всю совокупность метатеоретических предпосылок научно- исследовательской деятельности. Именно так, например, определяет понятие стиля мышления С. Б. Крымский. Под стилем мышления он понимает определенный исторически возникший тип объяснения действительности, «который, будучи общим для данной эпохи, устойчиво выявляется в развитии основных научных направлений и обусловливает некоторые стандартные представления в метаязыковых контекстах всех фундаментальных теорий своего времени». Еще более широкое понимание стиля мышления содержится в работе Л. А. Микешиной«Детерминация естественнонаучного познания».

Известного рода конкурентом понятия «стиля мышления» в литературе при фиксации метатеоретического уровня исследования выступает также понятие«картина мира». В работах некоторых авторов она определяется таким образом, что стиль мышления выступает лишь ее составной частью, хотя, как и понятие стиля мышления, первоначально картина мира понималась в узком смысле слова и связывалась только с фиксацией определенных исторически возникших представлений о структуре объективной реальности.

Наряду с понятиями стиля мышления и картины мира для фиксации метатеоретического (или интертеоретического) уровня знания в литературе используются также такие понятия, как «собственные и философские основания науки» (С.Т. Мелюхин, Ю.А. Петров), «теоретический базис научного познания»(М. В. Мостепаненко), «условия познания» (П.С. Дышлевый) и др.

Сведение всех подобного рода понятий свидетельствует о том, что и в нашей литературе по методологии науки давно уже назрела необходимость выделения в составе научного знания того, что мы пока условно называем метатеоретическим уровнем знания, введения новой методологической единицы, которая вместе с понятиями теоретического и эмпирического позволила бы составить более полное и правильное представление о структуре исследовательской деятельности в научном познании.

Признание существования в составе научного знания метатеоретического уровня сразу же поднимает целый комплекс проблем, касающихся гносеологической природы этого знания, его структуры, особенностей и тех функций, которые оно выполняет в ходе теоретического освоения действительности, и ряд других проблем.

Встает вопрос о тех основаниях, на которых можно проводить демаркационную линию между теоретическим уровнем исследования и его метатеоретическим основанием. Для решения этого вопроса прежде всего следует наложить некоторые ограничения на использование понятий«теоретическое мышление» и «теоретический уровень исследования». В широком смысле слова теоретическое мышление отождествляется с научным мышлением и противопоставляется в этом отношении обыденному мышлению. Ясно, что при таком понимании теоретического мышления то, что мы имеем в виду под метатеоретическим уровнем систематизации знания, относится к теоретическому мышлению. В более узком смысле слова под теоретическим мышлением понимают мышление, направленное «на совершенствование и развитие концептуальных средств науки», на построение «теоретического мира» в противоположность эмпирическому мышлению, которое направлено «на установление связей концептуального аппарата науки с реальностью, выявляемой в эксперименте и наблюдении». Но и три таком понимании теоретического мышления метатеоретическая деятельность не выходит за его рамки. Ограничить понятие теоретического мышления можно, если связывать его с определенными предполагаемыми результатами. В частности, можно считать, что результатом собственно теоретического мышления, в узком смысле слова, является научная теория. Тогда содержание теоретического мышления будет зависеть от понимания научной теории. Существует множество подходов к определению понятия «научная теория». Возьмем за основу определение научной теории, даваемое в «Философской энциклопедии» М. В. Поповичем и В. Н. Садовским.«Теория - форма достоверного научного знания о некоторой совокупности объектов, представляющая собой систему взаимосвязанных утверждении и доказательств и содержащая методы объяснения и предсказания явлений данной предметной области». В теории в форме законов выражается знание о существенных связях, обусловливающих возникновение и существование тех или иных явлений, и это позволяет в функциональном отношении трактовать теорию как систему описания, систематизации, объяснения и предсказания явлений определенной предметной области.

Если ограничивать теоретическое мышление процессами построения теорий, то в его состав следует включать всю ту совокупность познавательных процессов, которые направлены на выдвижение, развитие и обоснование теоретических гипотез, а также тех мыслительных процедур, в которых реализуются основные познавательные функции научных теорий: описание, объяснение, предсказание. В противоположность этому, на метатеоретическом уровне познания на основе определенных философских установок, обобщения результатов теоретической деятельности и самой практики научного познания фиксируются общие предпосылки теоретической деятельности. Если основным элементом теоретического знания является закон, утверждение о необходимых существенных связях между явлениями, то метатеоретическое знание формулируется в виде принципов различного порядка, в которых утверждается нечто уже о самой теории и практике теоретической деятельности. В форме принципов формулируются требования, предъявляемые к самой научной теории.Кроме того, можно добавить, что если теоретическое знание всегда выступает в определенном контексте исследования как проблематическое знание, знание, подлежащее обоснованию и проверке, то метатеоретическое знание в том же контексте условно рассматривается как непроблематическое, предпосылочное знание, эмпирическому обоснованию и проверке не подлежащее. В связи с этим можно теперь пояснить смысл приставки «мета» в понятии «метатеоретический уровень знания». Она имеет несколько смысловых оттенков: прежде всего аристотелевский смысл - это знание, лежащее «за» теоретическим знанием.Далее, эта приставка законно может ассоциироваться и с ее семантическим смыслом, поскольку метатеоретическое знание фиксируется в метаязыковых контекстах по отношению к языку теории. И наконец, приставка «мета» может связываться с предпосылочным, непроблематическим характером этого знания.