Сферические и плоские волны. Уравнение плоской бегущей волны Скорость плоской волны формула

Для большинства задач, связанных с волнами, важно знать состояние колебаний различных точек среды в тот или иной момент времени. Состояния точек среды будут определены, если известны амплитуды и фазы их колебаний. Для поперечных волн необходимо еше знать характер поляризации. Для плоской линейно-поляризованной волны достаточно иметь выражение, позволяющее определить смещение с(х, t) из положения равновесия любой точки среды с координатой х, в любой момент времени t. Такое выражение называется уравнением волны.

Рис. 2.21.

Рассмотрим так называемую бегущую волну, т.е. волну с плоским волновым фронтом, распространяющуюся в каком-либо одном определенном направлении (например, вдоль оси х). Пусть частицы среды, непосредственно примыкающие к источнику плоских волн, совершают колебания по гармоническому закону; %(0, /) = = ЛсобсоГ (рис. 2.21). На рисунке 2.21, а через ^(0, t) обозначено смещение частиц среды, лежащих в перпендикулярной рисунку плоскости и имеющих в выбранной системе координат координату х = 0 в момент времени t. Начало отсчета времени выбрано так, чтобы начальная фаза колебаний, определенных через косинусоидальную функцию, была равна нулю. Ось х совместим с лучом, т.е. с направлением распространения колебаний. В этом случае фронт волны перпендикулярен оси х, так что частицы, лежащие в этой плоскости, будут совершать колебания в одной фазе. Сам фронт волны в данной среде перемещается вдоль оси х со скоростью и распространения волны в данной среде.

Найдем выражение?(х, t) смещения частиц среды, удаленных от источника на расстояние х. Это расстояние фронт волны проходит

за время Следовательно, колебания частиц, лежащих в плоскости, удаленной от источника на расстояние х, будут отставать по времени на величину т от колебаний частиц, непосредственно примыкающих к источнику. Эти частицы (с координатой х) также будут совершать гармонические колебания. В отсутствие затухания амплитуда А колебаний (в случае плоской волны) не будет зависеть от координаты х, т.е.

Это и есть искомое уравнение тоской бегущей волны (не путать с волновым уравнением, рассматриваемым ниже!). Уравнение, как уже отмечалось, позволяет определить смещение % частицы среды с координатой х в момент времени t. Фаза колебаний зависит

от двух переменных: от координаты х частицы и времени t. В данный фиксированный момент времени фазы колебаний различных частиц будут, вообще говоря, различны, но можно выделить такие частицы, колебания которых будут происходить в одинаковой фазе (синфазно). Можно также считать, что разность фаз колебаний этих частиц равна 2пт (где т = 1, 2, 3,...). Кратчайшее расстояние между двумя частицами бегущей волны, колеблющимися в одинаковой фазе, называется длиной волны X.

Найдем связь длины волны X с другими величинами, характеризующими распространение колебаний в среде. В соответствии с введенным определением длины волны можно написать

или после сокращений Так как , то

Это выражение позволяет дать иное определение длины волны: длина волны есть расстояние, на которое успевают распространиться колебания частиц среды за время, равное периоду колебаний.

Уравнение волны обнаруживает двойную периодичность: по координате и по времени: ^(х, t) = Z,(x + nk, t) = l,(x, t + mT) = Цх + пХ, ml), где пит - любые целые числа. Можно, например, фиксировать координаты частиц (положить х = const) и рассматривать смещение их как функцию времени. Или, наоборот, фиксировать момент времени (принять t = const) и рассматривать смещение частиц как функцию координат (мгновенное состояние смещений - мгновенная фотография волны). Так, находясь на пристани можно с помощью фотоаппарата в момент времени t сфотографировать морскую поверхность, но можно, бросив щепку в море (т.е. зафиксировав координату х), следить за ее колебаниями во времени. Оба эти случая приведены в виде графиков на рис. 2.21, а-в.

Уравнение волны (2.125) можно переписать иначе

Отношение обозначается к и называется волновым числом

Так как , то

Волновое число, таким образом, показывает, какое число длин волн укладывается в отрезке 2л единиц длины. Введя волновое число в уравнение волны, получим уравнение бегущей в положительном направлении Ох волны в наиболее часто употребляемом виде

Найдем выражение, связывающее разность фаз Дер колебаний двух частиц, принадлежащих разным волновым поверхностям Х и х 2 . Воспользовавшись уравнением волны (2.131), запишем:

Если обозначить или согласно (2.130)

Плоская бегущая волна, распространяющаяся в произвольном направлении, описывается в общем случае уравнением

где г -радиус-вектор, проведенный из начала координат к частице, лежащей на волновой поверхности; к - волновой вектор, равный по модулю волновому числу (2.130) и совпадающий по направлению с нормалью к волновой поверхности в направлении распространении волны.

Возможна также комплексная форма записи уравнения волны. Так, например, в случае плоской волны, распространяющейся вдоль оси х

а в общем случае плоской волны произвольного направления

Уравнение волны в любой из перечисленных форм записи может быть получено как решение дифференциального уравнения, называемого волновым уравнением. Если мы знаем решение этого уравнения в форме (2.128) или (2.135) - уравнение бегущей волны, то найти само волновое уравнение не составляет труда. Продифференцируем 4(х, t) = % из (2.135) дважды по координате и дважды времени и получим

выражая?, через полученные производные и сравнивая результаты, получим

Имея в виду соотношение (2.129), запишем

Это и есть волновое уравнение для одномерного случая.

В общем виде для?, = с(х, у, z, /) волновое уравнение в декартовых координатах выглядит так

или в более компактном виде:

где Д - дифференциальный оператор Лапласа

Фазовой скоростью называется скорость распространения точек волны, колеблющихся в одинаковой фазе. Иными словами - это скорость перемещения «гребня», «впадины», либо любой другой точки волны, фаза которой фиксирована. Как уже отмечалось ранее, фронт волны (а следовательно, и любая волновая поверхность) перемещается вдоль оси Ох со скоростью и. Следовательно, скорость распространения колебаний в среде совпадает со скоростью перемещения данной фазы колебаний. Поэтому скорость и, определяемую соотношением (2.129), т.е.

принято называть фазовой скоростью.

Тот же результат можно получить, найдя скорость точек среды, удовлетворяющих условию постоянства фазы со/ - fee = const. Отсюда находится зависимость координаты от времени(со/ - const) и скорость перемещения данной фазы

что совпадает с (2.142).

Плоская бегущая волна, распространяющаяся в отрицательном направлении оси Ох, описывается уравнением

Действительно, в этом случае фазовая скорость отрицательна

Фазовая скорость в данной среде может зависеть от частоты колебаний источника. Зависимость фазовой скорости от частоты называется дисперсией, а среды, в которых имеет место эта зависимость, называются диспергирующими средами. Не следует думать, однако, что выражение (2.142) и есть указанная зависимость. Дело в том, что в отсутствие дисперсии волновое число к прямо пропорционально

со и поэтому . Дисперсия имеет место лишь в том случае, когда со зависит от к нелинейно).

Бегущая плоская волна называется монохроматической (имеющей одну частоту), если колебания в источнике гармонические. Монохроматическим волнам отвечает уравнение вида (2.131).

Для монохроматической волны угловая частота со и амплитуда А не зависят от времени. Это значит, что монохроматическая волна безгранична в пространстве и бесконечна во времени, т.е. представляет собой идеализированную модель. Всякая реальная волна, как бы тщательно ни поддерживалось постоянство частоты и амплитуды, монохроматической не является. Реальная волна не длится бесконечно долго, а начинается и кончается в определенные моменты времени в определенном месте, и, следовательно, амплитуда такой волны есть функция времени и координаты этого места. Однако чем длиннее интервал времени, в течение которого поддерживаются постоянными амплитуда и частота колебаний, тем ближе к монохроматической данная волна. Часто в практике монохроматической волной называют достаточно большой отрезок волны, в пределах которого частота и амплитуда не изменяются, подобно тому, как изображают на рисунке отрезок синусоиды, и называют его синусоидой.

ПЛОСКАЯ ВОЛНА

ПЛОСКАЯ ВОЛНА

Волна, у к-рой направление распространения одинаково во всех точках пространства. Простейший пример - однородная монохроматич. незатухающая П. в.:

и(z, t)=Aeiwt±ikz, (1)

где А - амплитуда, j= wt±kz - , w=2p/Т - круговая частота, Т -период колебаний, k - . Поверхности постоянной фазы (фазовые фронты) j=const П. в. являются плоскостями.

При отсутствии дисперсии, когда vф и vгр одинаковы и постоянны (vгр=vф= v), существуют стационарные (т. е. перемещающиеся как целое) бегущие П. в., к-рые допускают общее представление вида:

u(z, t)=f(z±vt), (2)

где f - произвольная функция. В нелинейных средах с дисперсией также возможны стационарные бегущие П. в. типа (2), но их форма уже не произвольна, а зависит как от параметров системы, так и от характера движения . В поглощающих (диссипативных) средах П. в. уменьшают свою амплитуду по мере распространения; при линейном затухании это может быть учтено путём замены в (1) k на комплексное волновое число kд ± ikм, где kм - коэфф. затухания П. в.

Однородная П. в., занимающая всё бесконечное , является идеализацией, однако любое волновое , сосредоточенное в конечной области (напр., направляемое линиями передачи или волноводами), можно представить как суперпозицию П. в. с тем или иным пространств. спектром k. При этом волна может по-прежнему иметь плоский фазовый фронт, но неоднородное амплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отдельные участки сферич. и цилиндрич. волн, малые по сравнению с радиусом кривизны фазового фронта, приближённо ведут себя как П. в.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПЛОСКАЯ ВОЛНА

- волна, ук-рой направление распространения одинаково во всех точках пространства.

где А - амплитуда,- фаза,- круговая частота, Т - период колебаний, k - волновое число. = const П. в. являются плоскостями.
При отсутствии дисперсии, когда фазоваяскорость v ф и групповая v гр одинаковы и постоянны (v гр = v ф = v ) существуют стационарные (т. е. перемещающиеся как целое) бегущиеП. в., к-рые можно представить в общем виде

где f - произвольная ф-ция. В нелинейныхсредах с дисперсией также возможны стационарные бегущие П. в. типа (2),но их форма уже не произвольна, а зависит как от параметров системы, таки от характера движения волны. В поглощающих (диссипативных) средах П. k на комплексное волновоечисло k д ik м,где k м - коэф. затухания П. в. Однородная П. в., занимающаявсё бесконечное , является идеализацией, однако любое волновоеполе, сосредоточенное в конечной области (напр., направляемое линиямипередачи или волноводами), можно представить как суперпозициюП. в. с тем или иным пространственным спектром k. При этом волнаможет no-прежнему иметь плоский фазовый фронт, во неоднородное распределениеамплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отд. участкисферич. или цилиндрич. волн, малые по сравнению с радиусом кривизны фазовогофронта, приближённо ведут себя как П. в.

Лит. см. при ст. Волны.

М. А. Миллер, Л. А. Островский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Эта функция должна быть периодической как относительно времени, так и координат (волна – это распространяющееся колебание, следовательно периодически повторяющееся движение). Кроме того, точки, отстоящие друг от друга на расстоянии l, колеблются одинаковым образом.

Уравнение плоской волны

Найдем вид функции x в случае плоской волны, предполагая, что колебания носят гармонический характер.

Направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновая поверхность будет перпендикулярна оси x . Так как все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t : . Пусть колебание точек, лежащих в плоскости , имеет вид (при начальной фазе )

(5.2.2)

Найдем вид колебания частиц в плоскости, соответствующей произвольному значению x . Чтобы пройти путь x , необходимо время .

Следовательно, колебания частиц в плоскости x будут отставать по времени на t от колебаний частиц в плоскости , т.е.

, (5.2.3)

– это уравнение плоской волны.

Таким образом, x есть смещение любой из точек с координатой x в момент времени t . При выводе мы предполагали, что амплитуда колебания . Это будет, если энергия волны не поглощается средой.

Такой же вид уравнение (5.2.3) будет иметь, если колебания распространяются вдоль оси y или z .

В общем виде уравнение плоской волны записывается так:

Выражения (5.2.3) и (5.2.4) есть уравнения бегущей волны .

Уравнение (5.2.3) описывает волну, распространяющуюся в сторону увеличения x . Волна, распространяющаяся в противоположном направлении, имеет вид:

.

Уравнение волны можно записать и в другом виде.

Введем волновое число , или в векторной форме:

, (5.2.5)

где – волновой вектор, – нормаль к волновой поверхности.

Так как , то . Отсюда . Тогда уравнение плоской волны запишется так:

. (5.2.6)

Уравнение сферической волны

Волны, зависящие от одной пространственной координаты

Анимация

Описание

В плоской волне всем точкам среды, лежащим в любой плоскости, перпендикулярной направлению распространения волны, в каждый момент времени соответствуют одинаковые смещения и скорости частиц среды. Таким образом, все величины, характеризующие плоскую волну, являются функциями времени и только одной координаты, например, х , если ось Ох совпадает с направлением распространения волны.

Волновое уравнение для продольной плоской волны имеет вид:

д 2 j /дx 2 = (1/c 2 )д 2 j /дt 2 . (1)

Его общее решение выражается следующим образом:

j = f 1 (ct - x)+f 2 (ct + x) , (2)

где j - потенциал или другая величина, характеризующая волновое движение среды (смещение, скорость смещения и т.д.);

с - скорость распространения волны;

f 1 и f 2 - произвольные функции, причем первое слагаемое (2) описывает плоскую волну, распространяющуюся в положительном направлении оси Ох , а второе - в противоположном направлении.

Волновые поверхности или геометрические места точек среды, где в данный момент времени фаза волны имеет одно и то же значение, для ПВ представляют собой систему параллельных плоскостей (рис. 1).

Волновые поверхности плоской волны

Рис. 1

В однородной изотропной среде волновые поверхности плоской волны перпендикулярны к направлению распространения волны (направлению переноса энергии), называемому лучом.

Временные характеристики

Время инициации (log to от -10 до 1);

Время существования (log tc от -10 до 3);

Время деградации (log td от -10 до 1);

Время оптимального проявления (log tk от -3 до 1).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Строго говоря, ни одна реальная волна не является плоской волной, т.к. распространяющаяся вдоль оси x плоская волна должна охватывать всю область пространства по координатам y и z от -Ґ до +Ґ . Однако во многих случаях можно указать ограниченный по y, z участок волны, на котором она практически совпадает с плоской волной. Прежде всего это возможно в однородной изотропной среде на достаточно больших расстояниях R от источника. Так, для гармонической плоской волны фаза во всех точках плоскости, перпендикулярной направлению ее распространения, одна и та же. Можно показать, что всякую гармоническую волну можно считать плоской волной на участке шириной r << (2R l )1/2 .

Применение эффекта

Некоторые волновые технологии являются наиболее эффективными именно в приближении плоских волн. В частности, показано, что при сейсмоакустических воздействиях (с целью повышения нефте- газоотдачи) на нефтяные и газовые пласты, представленные слоистыми геологическими структурами, взаимодействие прямых и переотраженных от границ слоев плоских волновых фронтов приводит возникновению стоячих волн, инициирующих постепенные перемещение и концентрацию углеводородных флюидов в пучностях стоячей волны (см. описание ФЭ «Стоячие волны»).

> Сферические и плоские волны

Научитесь различать сферические и плоские волны . Читайте, какую волну называют плоской или сферической, источник, роль волнового фронта, характеристика.

Сферические волны возникают из точечного источника в сферическом узоре, а плоские – бесконечные параллельные плоскости, нормальные к вектору фазовой скорости.

Задача обучения

  • Вычислить источники сферических и плоских волновых узоров.

Основные пункты

  • Волны создают конструктивные и деструктивные помехи.
  • Сферические возникают из одного точечного источника в сферической форме.
  • Плоская вода – частотная, волновые фронты которой выступают бесконечными параллельными плоскостями со стабильной амплитудой.
  • В реальности не выйдет получить идеальную плоскую волну, но многие приближаются к такому состоянию.

Термины

  • Деструктивные помехи – волны мешают друг другу, а точки не совпадают.
  • Конструктивные – волны мешают и точки расположены в идентичных фазах.
  • Волновой фронт – мнимая поверхность, простирающаяся сквозь осциллирующие точки в фазе среды.

Сферические волны

Какую волну называют сферической? Разработать метод по определению способа и места распространения волн удалось Кристиану Гюйгенсу. В 1678 году он выдвинул предположение, что каждая точка, с которой сталкивается световая помеха, превращается в источник сферической волны. Суммирование вторичных волн вычисляет вид в любом времени. Этот принцип показал, что при контакте волны создают деструктивные или конструктивные помехи.

Конструктивные формируются, если волны полностью пребывают в фазе друг друга, а финальная усиливается. В деструктивных волны не соответствуют по фазам и финальная просто сокращается. Волны возникают из одного точечного источника, поэтому формируются в сферическом узоре.

Если волны генерируются из точечного источника, то выступают сферическими

Этот принцип применяет закон преломления. Каждая точка на волне создает волны, мешающие друг другу конструктивно или деструктивно

Плоские волны

Теперь давайте поймем, какую волну называют плоской. Плоская отображает частотную волну, фронты которой выступают бесконечными параллельными плоскостями со стабильной амплитудой, расположенной перпендикулярно вектору фазовой скорости. В реальности нельзя добыть истинную плоскую волну. Только плоская с бесконечной протяжностью сможет ей соответствовать. Правда, многие волны приближаются к такому состоянию. Например, антенна формирует поле, выступающее примерно плоским.

Плоские отображают бесконечное число волновых фронтов, нормальных к стороне распространения